Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Flow velocity
Vector field which is used to mathematically describe the motion of a continuum

In continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is scalar, the flow speed. It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).

We don't have any images related to Flow velocity yet.
We don't have any YouTube videos related to Flow velocity yet.
We don't have any PDF documents related to Flow velocity yet.
We don't have any Books related to Flow velocity yet.
We don't have any archived web articles related to Flow velocity yet.

Definition

The flow velocity u of a fluid is a vector field

u = u ( x , t ) , {\displaystyle \mathbf {u} =\mathbf {u} (\mathbf {x} ,t),}

which gives the velocity of an element of fluid at a position x {\displaystyle \mathbf {x} \,} and time t . {\displaystyle t.\,}

The flow speed q is the length of the flow velocity vector3

q = ‖ u ‖ {\displaystyle q=\|\mathbf {u} \|}

and is a scalar field.

Uses

The flow velocity of a fluid effectively describes everything about the motion of a fluid. Many physical properties of a fluid can be expressed mathematically in terms of the flow velocity. Some common examples follow:

Steady flow

Main article: Steady flow

The flow of a fluid is said to be steady if u {\displaystyle \mathbf {u} } does not vary with time. That is if

∂ u ∂ t = 0. {\displaystyle {\frac {\partial \mathbf {u} }{\partial t}}=0.}

Incompressible flow

Main article: Incompressible flow

If a fluid is incompressible the divergence of u {\displaystyle \mathbf {u} } is zero:

∇ ⋅ u = 0. {\displaystyle \nabla \cdot \mathbf {u} =0.}

That is, if u {\displaystyle \mathbf {u} } is a solenoidal vector field.

Irrotational flow

Main article: Irrotational flow

A flow is irrotational if the curl of u {\displaystyle \mathbf {u} } is zero:

∇ × u = 0. {\displaystyle \nabla \times \mathbf {u} =0.}

That is, if u {\displaystyle \mathbf {u} } is an irrotational vector field.

A flow in a simply-connected domain which is irrotational can be described as a potential flow, through the use of a velocity potential Φ , {\displaystyle \Phi ,} with u = ∇ Φ . {\displaystyle \mathbf {u} =\nabla \Phi .} If the flow is both irrotational and incompressible, the Laplacian of the velocity potential must be zero: Δ Φ = 0. {\displaystyle \Delta \Phi =0.}

Vorticity

Main article: Vorticity

The vorticity, ω {\displaystyle \omega } , of a flow can be defined in terms of its flow velocity by

ω = ∇ × u . {\displaystyle \omega =\nabla \times \mathbf {u} .}

If the vorticity is zero, the flow is irrotational.

The velocity potential

Main article: Potential flow

If an irrotational flow occupies a simply-connected fluid region then there exists a scalar field ϕ {\displaystyle \phi } such that

u = ∇ ϕ . {\displaystyle \mathbf {u} =\nabla \mathbf {\phi } .}

The scalar field ϕ {\displaystyle \phi } is called the velocity potential for the flow. (See Irrotational vector field.)

Bulk velocity

In many engineering applications the local flow velocity u {\displaystyle \mathbf {u} } vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity u ¯ {\displaystyle {\bar {u}}} (with the usual dimension of length per time), defined as the quotient between the volume flow rate V ˙ {\displaystyle {\dot {V}}} (with dimension of cubed length per time) and the cross sectional area A {\displaystyle A} (with dimension of square length):

u ¯ = V ˙ A {\displaystyle {\bar {u}}={\frac {\dot {V}}{A}}} .

See also

References

  1. Duderstadt, James J.; Martin, William R. (1979). "Chapter 4:The derivation of continuum description from transport equations". In Wiley-Interscience Publications (ed.). Transport theory. New York. p. 218. ISBN 978-0471044925.{{cite book}}: CS1 maint: location missing publisher (link) 978-0471044925

  2. Freidberg, Jeffrey P. (2008). "Chapter 10:A self-consistent two-fluid model". In Cambridge University Press (ed.). Plasma Physics and Fusion Energy (1 ed.). Cambridge. p. 225. ISBN 978-0521733175.{{cite book}}: CS1 maint: location missing publisher (link) 978-0521733175

  3. Courant, R.; Friedrichs, K.O. (1999) [unabridged republication of the original edition of 1948]. Supersonic Flow and Shock Waves. Applied mathematical sciences (5th ed.). Springer-Verlag New York Inc. pp. 24. ISBN 0387902325. OCLC 44071435. 0387902325