Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Volume integral
Integral over a 3-D domain

In mathematics (particularly multivariable calculus), a volume integral (∭) is an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density function.

We don't have any images related to Volume integral yet.
We don't have any YouTube videos related to Volume integral yet.
We don't have any PDF documents related to Volume integral yet.
We don't have any Books related to Volume integral yet.
We don't have any archived web articles related to Volume integral yet.

In coordinates

Often the volume integral is represented in terms of a differential volume element d V = d x d y d z {\displaystyle dV=dx\,dy\,dz} . ∭ D f ( x , y , z ) d V . {\displaystyle \iiint _{D}f(x,y,z)\,dV.} It can also mean a triple integral within a region D ⊂ R 3 {\displaystyle D\subset \mathbb {R} ^{3}} of a function f ( x , y , z ) , {\displaystyle f(x,y,z),} and is usually written as: ∭ D f ( x , y , z ) d x d y d z . {\displaystyle \iiint _{D}f(x,y,z)\,dx\,dy\,dz.} A volume integral in cylindrical coordinates is ∭ D f ( ρ , φ , z ) ρ d ρ d φ d z , {\displaystyle \iiint _{D}f(\rho ,\varphi ,z)\rho \,d\rho \,d\varphi \,dz,} and a volume integral in spherical coordinates (using the ISO convention for angles with φ {\displaystyle \varphi } as the azimuth and θ {\displaystyle \theta } measured from the polar axis (see more on conventions)) has the form ∭ D f ( r , θ , φ ) r 2 sin ⁡ θ d r d θ d φ . {\displaystyle \iiint _{D}f(r,\theta ,\varphi )r^{2}\sin \theta \,dr\,d\theta \,d\varphi .} The triple integral can be transformed from Cartesian coordinates to any arbitrary coordinate system using the Jacobian matrix and determinant. Suppose we have a transformation of coordinates from ( x , y , z ) ↦ ( u , v , w ) {\displaystyle (x,y,z)\mapsto (u,v,w)} . We can represent the integral as the following. ∭ D f ( x , y , z ) d x d y d z = ∭ D f ( u , v , w ) | ∂ ( x , y , z ) ∂ ( u , v , w ) | d u d v d w {\displaystyle \iiint _{D}f(x,y,z)\,dx\,dy\,dz=\iiint _{D}f(u,v,w)\left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\,du\,dv\,dw} Where we define the Jacobian determinant to be. J = ∂ ( x , y , z ) ∂ ( u , v , w ) = | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | {\displaystyle \mathbf {J} ={\frac {\partial (x,y,z)}{\partial (u,v,w)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}}

Example

Integrating the equation f ( x , y , z ) = 1 {\displaystyle f(x,y,z)=1} over a unit cube yields the following result: ∫ 0 1 ∫ 0 1 ∫ 0 1 1 d x d y d z = ∫ 0 1 ∫ 0 1 ( 1 − 0 ) d y d z = ∫ 0 1 ( 1 − 0 ) d z = 1 − 0 = 1 {\displaystyle \int _{0}^{1}\int _{0}^{1}\int _{0}^{1}1\,dx\,dy\,dz=\int _{0}^{1}\int _{0}^{1}(1-0)\,dy\,dz=\int _{0}^{1}\left(1-0\right)dz=1-0=1}

So the volume of the unit cube is 1 as expected. This is rather trivial however, and a volume integral is far more powerful. For instance if we have a scalar density function on the unit cube then the volume integral will give the total mass of the cube. For example for density function: { f : R 3 → R f : ( x , y , z ) ↦ x + y + z {\displaystyle {\begin{cases}f:\mathbb {R} ^{3}\to \mathbb {R} \\f:(x,y,z)\mapsto x+y+z\end{cases}}} the total mass of the cube is: ∫ 0 1 ∫ 0 1 ∫ 0 1 ( x + y + z ) d x d y d z = ∫ 0 1 ∫ 0 1 ( 1 2 + y + z ) d y d z = ∫ 0 1 ( 1 + z ) d z = 3 2 {\displaystyle \int _{0}^{1}\int _{0}^{1}\int _{0}^{1}(x+y+z)\,dx\,dy\,dz=\int _{0}^{1}\int _{0}^{1}\left({\frac {1}{2}}+y+z\right)dy\,dz=\int _{0}^{1}(1+z)\,dz={\frac {3}{2}}}

See also

  • Mathematics portal