Xenon tetrafluoride (XeF4) is a binary compound of the noble gas xenon, produced by the chemical reaction of xenon with fluorine: Xe + 2 F2 → XeF4. This exothermic reaction releases 251 kJ/mol of energy. XeF4 is a colorless crystalline solid that sublimes at 117 °C. Its square planar molecular structure was revealed by NMR spectroscopy and X-ray crystallography, with neutron diffraction confirming the arrangement of four fluoride ligands and two mutually trans lone pairs on xenon, consistent with VSEPR theory.
Synthesis
The original synthesis of xenon tetrafluoride occurred through direct 1:5-molar-ratio combination of the elements in a nickel (Monel) vessel at 400 °C.8 The nickel does not catalyze the reaction, but rather protects the container surfaces against fluoride corrosion. Controlling the process against impurities is difficult, as xenon difluoride (XeF2), tetrafluoride, and hexafluoride (XeF6) are all in chemical equilibrium, the difluoride favored at low temperatures and little fluorine and the hexafluoride favored at high temperatures and excess fluorine.910 Fractional sublimation (xenon tetrafluoride is particularly involatile) or other equilibria generally allow purification of the product mixture.11
The elements combine more selectively when γ- or UV-irradiated in a nickel container or dissolved in anhydrous hydrogen fluoride with catalytic oxygen. That reaction is believed selective because dioxygen difluoride at standard conditions is too weak an oxidant to generate xenon(VI) species.12
Alternatively, fluoroxenonium perfluorometallate salts pyrolyze to XeF4.13
Reactions
Xenon tetrafluoride hydrolyzes at low temperatures to form elemental xenon, oxygen, hydrofluoric acid, and aqueous xenon trioxide:14
6 X e F 4 + 12 H 2 O → 2 X e O 3 + 4 X e ↑ + 3 O 2 ↑ + 24 H F {\displaystyle {\rm {\ 6XeF_{4}+12H_{2}O\rightarrow 2XeO_{3}+4Xe\uparrow +3O_{2}\uparrow +24HF}}}It is used as a precursor for synthesis of all tetravalent Xe compounds.15 Reaction with tetramethylammonium fluoride gives tetramethylammonium pentafluoroxenate, which contains the pentagonal XeF−5 anion. The XeF−5 anion is also formed by reaction with cesium fluoride:16
CsF + XeF4 → CsXeF5Reaction with bismuth pentafluoride (BiF5) forms the XeF+3 cation:17
BiF5 + XeF4 → XeF3BiF6The XeF+3 cation in the salt XeF3Sb2F11 has been characterized by NMR spectroscopy.18
At 400 °C, XeF4 reacts with xenon to form XeF2:19
XeF4 + Xe → 2 XeF2The reaction of xenon tetrafluoride with platinum yields platinum tetrafluoride and xenon:20
XeF4 + Pt → PtF4 + XeApplications
Xenon tetrafluoride has few applications. It has been shown to degrade silicone rubber for analyzing trace metal impurities in the rubber. XeF4 reacts with the silicone to form simple gaseous products, leaving a residue of metal impurities.21
External links
References
Zumdahl (2007). Chemistry. Boston: Houghton Mifflin. p. 243. ISBN 978-0-618-52844-8. 978-0-618-52844-8 ↩
Claassen, H. H.; Selig, H.; Malm, J. G. (1962). "Xenon Tetrafluoride". J. Am. Chem. Soc. 84 (18): 3593. doi:10.1021/ja00877a042. /wiki/J._Am._Chem._Soc. ↩
Chernick, C. L.; Claassen, H. H.; Fields, P. R.; Hyman, H. H.; Malm, J. G.; Manning, W. M.; Matheson, M. S.; Quarterman, L. A.; Schreiner, F.; Selig, H. H.; Sheft, I.; Siegel, S.; Sloth, E. N.; Stein, L.; Studier, M. H.; Weeks, J. L.; Zirin, M. H. (1962). "Fluorine Compounds of Xenon and Radon". Science. 138 (3537): 136–138. Bibcode:1962Sci...138..136C. doi:10.1126/science.138.3537.136. PMID 17818399. S2CID 10330125. /wiki/Bibcode_(identifier) ↩
Zumdahl (2007). Chemistry. Boston: Houghton Mifflin. p. 243. ISBN 978-0-618-52844-8. 978-0-618-52844-8 ↩
Brown, Thomas H.; Whipple, E. B.; Verdier, Peter H. (1963). "Xenon Tetrafluoride: Fluorine-19 High-Resolution Magnetic Resonance Spectrum". Science. 140 (3563): 178. Bibcode:1963Sci...140..178B. doi:10.1126/science.140.3563.178. PMID 17819836. S2CID 35981023. /wiki/Bibcode_(identifier) ↩
Ibers, James A.; Hamilton, Walter C. (1963). "Xenon Tetrafluoride: Crystal Structure". Science. 139 (3550): 106–107. Bibcode:1963Sci...139..106I. doi:10.1126/science.139.3550.106. PMID 17798707. S2CID 42119788. /wiki/Bibcode_(identifier) ↩
Burns, John H.; Agron, P. A.; Levy, Henri A (1963). "Xenon Tetrafluoride Molecule and Its Thermal Motion: A Neutron Diffraction Study". Science. 139 (3560): 1208–1209. Bibcode:1963Sci...139.1208B. doi:10.1126/science.139.3560.1208. PMID 17757912. S2CID 35858682. /wiki/Bibcode_(identifier) ↩
Haner, Jamie; Schrobilgen, Gary J. (2015). "The Chemistry of Xenon(IV)". Chem. Rev. 115 (2): 1255–1295. doi:10.1021/cr500427p. ISSN 0009-2665. PMID 25559700. /wiki/Doi_(identifier) ↩
Haner, Jamie; Schrobilgen, Gary J. (2015). "The Chemistry of Xenon(IV)". Chem. Rev. 115 (2): 1255–1295. doi:10.1021/cr500427p. ISSN 0009-2665. PMID 25559700. /wiki/Doi_(identifier) ↩
Bard, Allen J.; Parsons, Roger; Jordan, Joseph; International Union of Pure and Applied Chemistry (1985). Standard Potentials in Aqueous Solution. CRC Press. pp. 767–768. ISBN 0-8247-7291-1. 0-8247-7291-1 ↩
Haner, Jamie; Schrobilgen, Gary J. (2015). "The Chemistry of Xenon(IV)". Chem. Rev. 115 (2): 1255–1295. doi:10.1021/cr500427p. ISSN 0009-2665. PMID 25559700. /wiki/Doi_(identifier) ↩
Haner, Jamie; Schrobilgen, Gary J. (2015). "The Chemistry of Xenon(IV)". Chem. Rev. 115 (2): 1255–1295. doi:10.1021/cr500427p. ISSN 0009-2665. PMID 25559700. /wiki/Doi_(identifier) ↩
Haner, Jamie; Schrobilgen, Gary J. (2015). "The Chemistry of Xenon(IV)". Chem. Rev. 115 (2): 1255–1295. doi:10.1021/cr500427p. ISSN 0009-2665. PMID 25559700. /wiki/Doi_(identifier) ↩
Williamson; Koch, C. W. (Mar 1963). "Xenon Tetrafluoride: Reaction with Aqueous Solutions". Science. 139 (3559): 1046–1047. Bibcode:1963Sci...139.1046W. doi:10.1126/science.139.3559.1046. ISSN 0036-8075. PMID 17812981. S2CID 33320384. /wiki/Bibcode_(identifier) ↩
Haner, Jamie; Schrobilgen, Gary J. (2015). "The Chemistry of Xenon(IV)". Chem. Rev. 115 (2): 1255–1295. doi:10.1021/cr500427p. ISSN 0009-2665. PMID 25559700. /wiki/Doi_(identifier) ↩
Harding, Charlie; Johnson, David Arthur; Janes, Rob (2002). Elements of the p Block. Molecular World. Vol. 9. Royal Society of Chemistry. p. 93. ISBN 0-85404-690-9. 0-85404-690-9 ↩
Suzuki, Hitomi; Matano, Yoshihiro (2001). Organobismuth chemistry. Elsevier. p. 8. ISBN 0-444-20528-4. 0-444-20528-4 ↩
Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. (1971). "Trifluoroxenon(IV) µ-fluoro-bispentafluoroantimonate(V): the XeF+3 cation". Journal of the Chemical Society D: Chemical Communications (23): 1543–1544. doi:10.1039/C29710001543. /wiki/Doi_(identifier) ↩
Bard, Allen J.; Parsons, Roger; Jordan, Joseph; International Union of Pure and Applied Chemistry (1985). Standard Potentials in Aqueous Solution. CRC Press. pp. 767–768. ISBN 0-8247-7291-1. 0-8247-7291-1 ↩
Bard, Allen J.; Parsons, Roger; Jordan, Joseph; International Union of Pure and Applied Chemistry (1985). Standard Potentials in Aqueous Solution. CRC Press. pp. 767–768. ISBN 0-8247-7291-1. 0-8247-7291-1 ↩
Rigin, V.; Skvortsov, N. K.; Rigin, V. V. (March 1997). "Xenon tetrafluoride as a decomposition agent for silicone rubber for isolation and atomic emission spectrometric determination of trace metals". Analytica Chimica Acta. 340 (1–3): 1–3. Bibcode:1997AcAC..340....1R. doi:10.1016/S0003-2670(96)00563-6. /wiki/Bibcode_(identifier) ↩