Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Zinc nitride
Chemical compound

Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.

Related Image Collections Add Image
We don't have any YouTube videos related to Zinc nitride yet.
We don't have any PDF documents related to Zinc nitride yet.
We don't have any Books related to Zinc nitride yet.
We don't have any archived web articles related to Zinc nitride yet.

Chemical properties

Zinc nitride can be obtained by thermally decomposing zincamide (zinc diamine)1 in an anaerobic environment, at temperatures in excess of 200 °C. The by-product of the reaction is ammonia.2

3 Zn(NH2)2 → Zn3N2 + 4 NH3

It can also be formed by heating zinc to 600 °C in a current of ammonia; the by-product is hydrogen gas.34

3 Zn + 2 NH3 → Zn3N2 + 3 H2

The decomposition of Zinc Nitride into the elements at the same temperature is a competing reaction.5 At 700 °C Zinc Nitride decomposes.6 It has also been made by producing an electric discharge between zinc electrodes in a nitrogen atmosphere.78 Thin films have been produced by chemical vapour deposition of Bis(bis(trimethylsilyl)amido]zinc with ammonia gas onto silica or ZnO coated alumina at 275 to 410 °C.9

The crystal structure is anti-isomorphous with Manganese(III) oxide. (bixbyite).1011 The heat of formation is c. 24 kilocalories (100 kJ) per mol.12 It is a semiconductor with a reported bandgap of c. 3.2eV,13 however, a thin zinc nitride film prepared by electrolysis of molten salt mixture containing Li3N with a zinc electrode showed a band-gap of 1.01 eV.14

Zinc nitride reacts violently with water to form ammonia and zinc oxide.1516

Zn3N2 + 3 H2O → 3 ZnO + 2 NH3

Zinc nitride reacts with lithium (produced in an electrochemical cell) by insertion. The initial reaction is the irreversible conversion into LiZn in a matrix of beta-Li3N. These products then can be converted reversibly and electrochemically into LiZnN and metallic Zn.1718

See also

Further reading

References

  1. Roscoe, H. E.; Schorlemmer, C. (1907) [1878]. A Treatise on Chemistry: Volume II, The Metals (4th ed.). London: Macmillan. pp. 650–651. Retrieved 2007-11-01. /wiki/Henry_Enfield_Roscoe

  2. Bloxam, C. L. (1903). Chemistry, Inorganic and Organic (9th ed.). Philadelphia: P. Blakiston's Son & Co. p. 380. Retrieved 2007-10-31. https://archive.org/details/chemistryinorga02bloxgoog

  3. Roscoe, H. E.; Schorlemmer, C. (1907) [1878]. A Treatise on Chemistry: Volume II, The Metals (4th ed.). London: Macmillan. pp. 650–651. Retrieved 2007-11-01. /wiki/Henry_Enfield_Roscoe

  4. Lowry, M. T. (1922). Inorganic Chemistry. Macmillan. p. 872. Retrieved 2007-11-01. /wiki/Thomas_Martin_Lowry

  5. Maxtead, E.B. (1921), Ammonia and the Nitrides, pp. 69–20

  6. CRC Handbook of Chemistry and Physics (96 ed.), §4-100 Physical Constants of Inorganic Compounds

  7. Maxtead, E.B. (1921), Ammonia and the Nitrides, pp. 69–20

  8. Mellor, J.W. (1964), A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. 8, Part 1, pp. 160–161

  9. Maile, E.; Fischer, R. A. (Oct 2005), "MOCVD of the Cubic Zinc Nitride Phase, Zn3N2, Using Zn[N(SiMe3)2]2 and Ammonia as Precursors", Chemical Vapor Deposition, 11 (10): 409–414, doi:10.1002/cvde.200506383 /wiki/Doi_(identifier)

  10. Partin, D. E.; Williams, D. J.; O'Keeffe, M. (1997). "The Crystal Structures of Mg3N2 and Zn3N2". Journal of Solid State Chemistry. 132 (1): 56–59. Bibcode:1997JSSCh.132...56P. doi:10.1006/jssc.1997.7407. /wiki/Bibcode_(identifier)

  11. Mellor, J.W. (1964), A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. 8, Part 1, pp. 160–161

  12. Mellor, J.W. (1964), A Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. 8, Part 1, pp. 160–161

  13. Ebru, S.T.; Ramazan, E.; Hamide, K. (2007), "Structural and Optical Properties of Zinc Nitride Films Prepared by Pulsed Filtered Cathodic Vacuum Arc Deposition" (PDF), Chin. Phys. Lett., 24 (12): 3477, Bibcode:2007ChPhL..24.3477S, doi:10.1088/0256-307x/24/12/051, S2CID 123496085 http://cpl.iphy.ac.cn/fileup/PDF/2007-1061.pdf

  14. Toyoura, Kazuaki; Tsujimura, Hiroyuki; Goto, Takuya; Hachiya, Kan; Hagiwara, Rika; Ito, Yasuhiko (2005), "Optical properties of zinc nitride formed by molten salt electrochemical process", Thin Solid Films, 492 (1–2): 88–92, Bibcode:2005TSF...492...88T, doi:10.1016/j.tsf.2005.06.057 /wiki/Bibcode_(identifier)

  15. Roscoe, H. E.; Schorlemmer, C. (1907) [1878]. A Treatise on Chemistry: Volume II, The Metals (4th ed.). London: Macmillan. pp. 650–651. Retrieved 2007-11-01. /wiki/Henry_Enfield_Roscoe

  16. Bloxam, C. L. (1903). Chemistry, Inorganic and Organic (9th ed.). Philadelphia: P. Blakiston's Son & Co. p. 380. Retrieved 2007-10-31. https://archive.org/details/chemistryinorga02bloxgoog

  17. Amatucci, G. G.; Pereira, N. (2004). "Nitride and Silicide Negative Electrodes". In Nazri, G.-A.; Pistoia, G. (eds.). Lithium Batteries: Science and Technology. Kluwer Academic Publishers. p. 256. ISBN 978-1-4020-7628-2. Retrieved 2007-11-01. 978-1-4020-7628-2

  18. Pereiraa, N.; Klein, L.C.; Amatuccia, G.G. (2002), "The Electrochemistry of Zn3 N 2 and LiZnN - A Lithium Reaction Mechanism for Metal Nitride Electrodes", Journal of the Electrochemical Society, 149 (3): A262, Bibcode:2002JElS..149A.262P, doi:10.1149/1.1446079 /wiki/Bibcode_(identifier)