Infinite-order apeirogonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic regular tiling |
Vertex configuration | ∞∞ |
Schläfli symbol | {∞,∞} |
Wythoff symbol | ∞ | ∞ 2∞ ∞ | ∞ |
Coxeter diagram | |
Symmetry group | [∞,∞], (*∞∞2)[(∞,∞,∞)], (*∞∞∞) |
Dual | self-dual |
Properties | Vertex-transitive, edge-transitive, face-transitive |
The infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.
Related Image Collections
Add Image
We don't have any YouTube videos related to Infinite-order apeirogonal tiling yet.
You can add one yourself here.
We don't have any PDF documents related to Infinite-order apeirogonal tiling yet.
You can add one yourself here.
We don't have any Books related to Infinite-order apeirogonal tiling yet.
You can add one yourself here.
We don't have any archived web articles related to Infinite-order apeirogonal tiling yet.
Symmetry
This tiling represents the fundamental domains of *∞∞ symmetry.
Uniform colorings
This tiling can also be alternately colored in the [(∞,∞,∞)] symmetry from 3 generator positions.
Domains | 0 | 1 | 2 |
---|---|---|---|
symmetry:[(∞,∞,∞)] | t0{(∞,∞,∞)} | t1{(∞,∞,∞)} | t2{(∞,∞,∞)} |
Related polyhedra and tiling
The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.
a{∞,∞} or = ∪Paracompact uniform tilings in [∞,∞] family
| ||||||
---|---|---|---|---|---|---|
= = | = = | = = | = = | = = | = | = |
{∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} |
Dual tilings | ||||||
V∞∞ | V∞.∞.∞ | V(∞.∞)2 | V∞.∞.∞ | V∞∞ | V4.∞.4.∞ | V4.4.∞ |
Alternations | ||||||
[1+,∞,∞](*∞∞2) | [∞+,∞](∞*∞) | [∞,1+,∞](*∞∞∞∞) | [∞,∞+](∞*∞) | [∞,∞,1+](*∞∞2) | [(∞,∞,2+)](2*∞∞) | [∞,∞]+(2∞∞) |
h{∞,∞} | s{∞,∞} | hr{∞,∞} | s{∞,∞} | h2{∞,∞} | hrr{∞,∞} | sr{∞,∞} |
Alternation duals | ||||||
V(∞.∞)∞ | V(3.∞)3 | V(∞.4)4 | V(3.∞)3 | V∞∞ | V(4.∞.4)2 | V3.3.∞.3.∞ |
Paracompact uniform tilings in [(∞,∞,∞)] family
| ||||||
---|---|---|---|---|---|---|
(∞,∞,∞)h{∞,∞} | r(∞,∞,∞)h2{∞,∞} | (∞,∞,∞)h{∞,∞} | r(∞,∞,∞)h2{∞,∞} | (∞,∞,∞)h{∞,∞} | r(∞,∞,∞)r{∞,∞} | t(∞,∞,∞)t{∞,∞} |
Dual tilings | ||||||
V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞.∞.∞ |
Alternations | ||||||
[(1+,∞,∞,∞)](*∞∞∞∞) | [∞+,∞,∞)](∞*∞) | [∞,1+,∞,∞)](*∞∞∞∞) | [∞,∞+,∞)](∞*∞) | [(∞,∞,∞,1+)](*∞∞∞∞) | [(∞,∞,∞+)](∞*∞) | [∞,∞,∞)]+(∞∞∞) |
Alternation duals | ||||||
V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V3.∞.3.∞.3.∞ |
See also
Wikimedia Commons has media related to Infinite-order apeirogonal tiling.- John Horton Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
- "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
External links
- Weisstein, Eric W. "Hyperbolic tiling". MathWorld.
- Weisstein, Eric W. "Poincaré hyperbolic disk". MathWorld.
- Hyperbolic and Spherical Tiling Gallery Archived 2013-03-24 at the Wayback Machine
- KaleidoTile 3: Educational software to create spherical, planar and hyperbolic tilings
- Hyperbolic Planar Tessellations, Don Hatch