Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Interpretability logic

Interpretability logics comprise a family of modal logics that extend provability logic to describe interpretability or various related metamathematical properties and relations such as weak interpretability, Π1-conservativity, cointerpretability, tolerance, cotolerance, and arithmetic complexities.

Main contributors to the field are Alessandro Berarducci, Petr Hájek, Konstantin Ignatiev, Giorgi Japaridze, Franco Montagna, Vladimir Shavrukov, Rineke Verbrugge, Albert Visser, and Domenico Zambella.

We don't have any images related to Interpretability logic yet.
We don't have any YouTube videos related to Interpretability logic yet.
We don't have any PDF documents related to Interpretability logic yet.
We don't have any Books related to Interpretability logic yet.
We don't have any archived web articles related to Interpretability logic yet.

Examples

Logic ILM

The language of ILM extends that of classical propositional logic by adding the unary modal operator ◻ {\displaystyle \Box } and the binary modal operator ▹ {\displaystyle \triangleright } (as always, ◊ p {\displaystyle \Diamond p} is defined as ¬ ◻ ¬ p {\displaystyle \neg \Box \neg p} ). The arithmetical interpretation of ◻ p {\displaystyle \Box p} is “ p {\displaystyle p} is provable in Peano arithmetic (PA)”, and p ▹ q {\displaystyle p\triangleright q} is understood as “ P A + q {\displaystyle PA+q} is interpretable in P A + p {\displaystyle PA+p} ”.

Axiom schemata:

  1. All classical tautologies
  2. ◻ ( p → q ) → ( ◻ p → ◻ q ) {\displaystyle \Box (p\rightarrow q)\rightarrow (\Box p\rightarrow \Box q)}
  3. ◻ ( ◻ p → p ) → ◻ p {\displaystyle \Box (\Box p\rightarrow p)\rightarrow \Box p}
  4. ◻ ( p → q ) → ( p ▹ q ) {\displaystyle \Box (p\rightarrow q)\rightarrow (p\triangleright q)}
  5. ( p ▹ q ) → ( ◊ p → ◊ q ) {\displaystyle (p\triangleright q)\rightarrow (\Diamond p\rightarrow \Diamond q)}
  6. ( p ▹ q ) ∧ ( q ▹ r ) → ( p ▹ r ) {\displaystyle (p\triangleright q)\wedge (q\triangleright r)\rightarrow (p\triangleright r)}
  7. ( p ▹ r ) ∧ ( q ▹ r ) → ( ( p ∨ q ) ▹ r ) {\displaystyle (p\triangleright r)\wedge (q\triangleright r)\rightarrow ((p\vee q)\triangleright r)}
  8. ◊ p ▹ p {\displaystyle \Diamond p\triangleright p}
  9. ( p ▹ q ) → ( ( p ∧ ◻ r ) ▹ ( q ∧ ◻ r ) ) {\displaystyle (p\triangleright q)\rightarrow ((p\wedge \Box r)\triangleright (q\wedge \Box r))}

Rules of inference:

  1. “From p {\displaystyle p} and p → q {\displaystyle p\rightarrow q} conclude q {\displaystyle q} ”
  2. “From p {\displaystyle p} conclude ◻ p {\displaystyle \Box p} ”.

The completeness of ILM with respect to its arithmetical interpretation was independently proven by Alessandro Berarducci and Vladimir Shavrukov.

Logic TOL

The language of TOL extends that of classical propositional logic by adding the modal operator ◊ {\displaystyle \Diamond } which is allowed to take any nonempty sequence of arguments. The arithmetical interpretation of ◊ ( p 1 , … , p n ) {\displaystyle \Diamond (p_{1},\ldots ,p_{n})} is “ ( P A + p 1 , … , P A + p n ) {\displaystyle (PA+p_{1},\ldots ,PA+p_{n})} is a tolerant sequence of theories”.

Axioms (with p , q {\displaystyle p,q} standing for any formulas, r → , s → {\displaystyle {\vec {r}},{\vec {s}}} for any sequences of formulas, and ◊ ( ) {\displaystyle \Diamond ()} identified with ⊤):

  1. All classical tautologies
  2. ◊ ( r → , p , s → ) → ◊ ( r → , p ∧ ¬ q , s → ) ∨ ◊ ( r → , q , s → ) {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p\wedge \neg q,{\vec {s}})\vee \Diamond ({\vec {r}},q,{\vec {s}})}
  3. ◊ ( p ) → ◊ ( p ∧ ¬ ◊ ( p ) ) {\displaystyle \Diamond (p)\rightarrow \Diamond (p\wedge \neg \Diamond (p))}
  4. ◊ ( r → , p , s → ) → ◊ ( r → , s → ) {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},{\vec {s}})}
  5. ◊ ( r → , p , s → ) → ◊ ( r → , p , p , s → ) {\displaystyle \Diamond ({\vec {r}},p,{\vec {s}})\rightarrow \Diamond ({\vec {r}},p,p,{\vec {s}})}
  6. ◊ ( p , ◊ ( r → ) ) → ◊ ( p ∧ ◊ ( r → ) ) {\displaystyle \Diamond (p,\Diamond ({\vec {r}}))\rightarrow \Diamond (p\wedge \Diamond ({\vec {r}}))}
  7. ◊ ( r → , ◊ ( s → ) ) → ◊ ( r → , s → ) {\displaystyle \Diamond ({\vec {r}},\Diamond ({\vec {s}}))\rightarrow \Diamond ({\vec {r}},{\vec {s}})}

Rules of inference:

  1. “From p {\displaystyle p} and p → q {\displaystyle p\rightarrow q} conclude q {\displaystyle q} ”
  2. “From ¬ p {\displaystyle \neg p} conclude ¬ ◊ ( p ) {\displaystyle \neg \Diamond (p)} ”.

The completeness of TOL with respect to its arithmetical interpretation was proven by Giorgi Japaridze.