The concept of allotropy was originally proposed in 1840 by the Swedish scientist Baron Jöns Jakob Berzelius (1779–1848). The term is derived from Greek άλλοτροπἱα (allotropia) 'variability, changeableness'. After the acceptance of Avogadro's hypothesis in 1860, it was understood that elements could exist as polyatomic molecules, and two allotropes of oxygen were recognized as O2 and O3. In the early 20th century, it was recognized that other cases such as carbon were due to differences in crystal structure.
Allotropes are different structural forms of the same element and can exhibit quite different physical properties and chemical behaviours. The change between allotropic forms is triggered by the same forces that affect other structures, i.e., pressure, light, and temperature. Therefore, the stability of the particular allotropes depends on particular conditions. For instance, iron changes from a body-centered cubic structure (ferrite) to a face-centered cubic structure (austenite) above 906 °C, and tin undergoes a modification known as tin pest from a metallic form to a semimetallic form below 13.2 °C (55.8 °F). As an example of allotropes having different chemical behaviour, ozone (O3) is a much stronger oxidizing agent than dioxygen (O2).
Among the metallic elements that occur in nature in significant quantities (56 up to U, without Tc and Pm), almost half (27) are allotropic at ambient pressure: Li, Be, Na, Ca, Ti, Mn, Fe, Co, Sr, Y, Zr, Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Yb, Hf, Tl, Th, Pa and U. Some phase transitions between allotropic forms of technologically relevant metals are those of Ti at 882 °C, Fe at 912 °C and 1,394 °C, Co at 422 °C, Zr at 863 °C, Sn at 13 °C and U at 668 °C and 776 °C.
Most stable structure under standard conditions.
Structures stable below room temperature.
Structures stable above room temperature.
Structures stable above atmospheric pressure.
In 2017, the concept of nanoallotropy was proposed. Nanoallotropes, or allotropes of nanomaterials, are nanoporous materials that have the same chemical composition (e.g., Au), but differ in their architecture at the nanoscale (that is, on a scale 10 to 100 times the dimensions of individual atoms). Such nanoallotropes may help create ultra-small electronic devices and find other industrial applications. The different nanoscale architectures translate into different properties, as was demonstrated for surface-enhanced Raman scattering performed on several different nanoallotropes of gold. A two-step method for generating nanoallotropes was also created.
IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Allotrope". doi:10.1351/goldbook.A00243 /wiki/International_Union_of_Pure_and_Applied_Chemistry
See:
Berzelius, Jac. (1841). Årsberättelse om Framstegen i Fysik och Kemi afgifven den 31 Mars 1840. Första delen [Annual Report on Progress in Physics and Chemistry submitted March 31, 1840. First part.] (in Swedish). Stockholm, Sweden: P.A. Norstedt & Söner. p. 14. From p. 14: "Om det ock passar väl för att uttrycka förhållandet emellan myrsyrad ethyloxid och ättiksyrad methyloxid, så är det icke passande för de olika tillstånd hos de enkla kropparne, hvari dessa blifva af skiljaktiga egenskaper, och torde för dem böra ersättas af en bättre vald benämning, t. ex. Allotropi (af αλλότροπος, som betyder: af olika beskaffenhet) eller allotropiskt tillstånd." (If it [i.e., the word isomer] is also well suited to express the relation between formic acid ethyl oxide [i.e., ethyl formate] and acetic acid methyloxide [i.e., methyl acetate], then it [i.e., the word isomers] is not suitable for different conditions of simple substances, where these [substances] transform to have different properties, and [therefore the word isomers] should be replaced, in their case, by a better chosen name; for example, Allotropy (from αλλότροπος, which means: of different nature) or allotropic condition.)
Republished in German: Berzelius, Jacob; Wöhler, F. (1841). "Jahres-Bericht über die Fortschritte der physischen Wissenschaften" [Annual Report on Progress of the Physical Sciences]. Jahres Bericht Über die Fortschritte der Physischen Wissenschaften (in German). 20. Tübingen, (Germany): Laupp'schen Buchhandlung: 13. From p. 13: "Wenn es sich auch noch gut eignet, um das Verhältniss zwischen ameisensaurem Äthyloxyd und essigsaurem Methyloxyd auszudrücken, so ist es nicht passend für ungleiche Zustände bei Körpern, in welchen diese verschiedene Eigenschaften annehmen, und dürfte für diese durch eine besser gewählte Benennung zu ersetzen sein, z. B. durch Allotropie (von αλλότροπος, welches bedeutet: von ungleicher Beschaffenheit), oder durch allotropischen Zustand." (Even if it [i.e., the word isomer] is still well suited to express the relation between ethyl formate and methyl acetate, then it is not appropriate for the distinct conditions in the case of substances where these [substances] assume different properties, and for these, [the word isomer] may be replaced with a better chosen designation, e.g., with Allotropy (from αλλότροπος, which means: of distinct character), or with allotropic condition.)
Merriam-Webster online dictionary: Allotropy
https://babel.hathitrust.org/cgi/pt?id=nyp.33433009789326&view=1up&seq=176
Jensen, W. B. (2006), "The Origin of the Term Allotrope", J. Chem. Educ., 83 (6): 838–39, Bibcode:2006JChEd..83..838J, doi:10.1021/ed083p838. /wiki/William_B._Jensen
"allotropy", A New English Dictionary on Historical Principles, vol. 1, Oxford University Press, 1888, p. 238.
Jensen, W. B. (2006), "The Origin of the Term Allotrope", J. Chem. Educ., 83 (6): 838–39, Bibcode:2006JChEd..83..838J, doi:10.1021/ed083p838. /wiki/William_B._Jensen
Ostwald, Wilhelm; Taylor, W.W. (1912). Outlines of General Chemistry (3rd ed.). London, England: Macmillan and Co., Ltd. p. 104. From p. 104: "Substances are known which exist not only in two, but even in three, four or five different solid forms; no limitation to the number is known to exist. Such substances are called polymorphous. The name allotropy is commonly employed in the same connexion, especially when the substance is an element. There is no real reason for making this distinction, and it is preferable to allow the second less common name to die out." https://books.google.com/books?id=1w1DAAAAIAAJ&pg=PA104
Jensen, W. B. (2006), "The Origin of the Term Allotrope", J. Chem. Educ., 83 (6): 838–39, Bibcode:2006JChEd..83..838J, doi:10.1021/ed083p838. /wiki/William_B._Jensen
Jensen 2006, citing Addison, W. E. The Allotropy of the Elements (Elsevier 1964) that many have repeated this advice.
Werner Heisenberg – Facts Nobelprize.org https://www.nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberg-facts.html
"Meet Q-silicon, a new magnetic material for spintronic quantum computers". New Atlas. July 4, 2023. https://newatlas.com/materials/q-silicon-magnetic-spintronic-quantum-computers/
Raj, G. Advanced Inorganic Chemistry Vol-1. Krishna Prakashan. p. 1327. ISBN 9788187224037. Retrieved January 6, 2017. 9788187224037
Overhauser, A. W. (1984-07-02). "Crystal Structure of Lithium at 4.2 K". Physical Review Letters. 53 (1). American Physical Society (APS): 64–65. Bibcode:1984PhRvL..53...64O. doi:10.1103/physrevlett.53.64. ISSN 0031-9007. /wiki/Bibcode_(identifier)
Hanfland, M.; Syassen, K.; Christensen, N. E.; Novikov, D. L. (2000). "New high-pressure phases of lithium". Nature. 408 (6809). Springer Science and Business Media LLC: 174–178. Bibcode:2000Natur.408..174H. doi:10.1038/35041515. ISSN 0028-0836. PMID 11089965. S2CID 4303422. /wiki/Bibcode_(identifier)
Hanfland, M.; Syassen, K.; Christensen, N. E.; Novikov, D. L. (2000). "New high-pressure phases of lithium". Nature. 408 (6809). Springer Science and Business Media LLC: 174–178. Bibcode:2000Natur.408..174H. doi:10.1038/35041515. ISSN 0028-0836. PMID 11089965. S2CID 4303422. /wiki/Bibcode_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Hanfland, M.; Loa, I.; Syassen, K. (2002-05-13). "Sodium under pressure: bcc to fcc structural transition and pressure-volume relation to 100 GPa". Physical Review B. 65 (18). American Physical Society (APS): 184109. Bibcode:2002PhRvB..65r4109H. doi:10.1103/physrevb.65.184109. ISSN 0163-1829. /wiki/Bibcode_(identifier)
McMahon, M. I.; Gregoryanz, E.; Lundegaard, L. F.; Loa, I.; Guillaume, C.; Nelmes, R. J.; Kleppe, A. K.; Amboage, M.; Wilhelm, H.; Jephcoat, A. P. (2007-10-18). "Structure of sodium above 100 GPa by single-crystal x-ray diffraction". Proceedings of the National Academy of Sciences. 104 (44): 17297–17299. Bibcode:2007PNAS..10417297M. doi:10.1073/pnas.0709309104. ISSN 0027-8424. PMC 2077250. PMID 17947379. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2077250
Gregoryanz, E.; Lundegaard, L. F.; McMahon, M. I.; Guillaume, C.; Nelmes, R. J.; Mezouar, M. (2008-05-23). "Structural Diversity of Sodium". Science. 320 (5879). American Association for the Advancement of Science (AAAS): 1054–1057. Bibcode:2008Sci...320.1054G. doi:10.1126/science.1155715. ISSN 0036-8075. PMID 18497293. S2CID 29596632. /wiki/Bibcode_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Olijnyk, H.; Holzapfel, W. B. (1985-04-01). "High-pressure structural phase transition in Mg". Physical Review B. 31 (7). American Physical Society (APS): 4682–4683. Bibcode:1985PhRvB..31.4682O. doi:10.1103/physrevb.31.4682. ISSN 0163-1829. PMID 9936412. /wiki/Bibcode_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
de la Peña O’Shea, Víctor Antonio; Moreira, Iberio de P. R.; Roldán, Alberto; Illas, Francesc (8 July 2010). "Electronic and magnetic structure of bulk cobalt: The α, β, and ε-phases from density functional theory calculations". The Journal of Chemical Physics. 133 (2): 024701. doi:10.1063/1.3458691. PMID 20632764. /wiki/Doi_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Degtyareva, V.F. (2014). "Potassium under pressure: Electronic origin of complex structures". Solid State Sciences. 36: 62–72. arXiv:1310.4718. Bibcode:2014SSSci..36...62D. doi:10.1016/j.solidstatesciences.2014.07.008. /wiki/ArXiv_(identifier)
Deffrennes, Guillaume; Faure, Philippe; Bottin, François; Joubert, Jean-Marc; Oudot, Benoit (2022). "Tin (Sn) at high pressure: Review, X-ray diffraction, DFT calculations, and Gibbs energy modeling". Journal of Alloys and Compounds. 919: 165675. arXiv:2203.16240. doi:10.1016/j.jallcom.2022.165675. /wiki/ArXiv_(identifier)
Deffrennes, Guillaume; Faure, Philippe; Bottin, François; Joubert, Jean-Marc; Oudot, Benoit (2022). "Tin (Sn) at high pressure: Review, X-ray diffraction, DFT calculations, and Gibbs energy modeling". Journal of Alloys and Compounds. 919: 165675. arXiv:2203.16240. doi:10.1016/j.jallcom.2022.165675. /wiki/ArXiv_(identifier)
Deffrennes, Guillaume; Faure, Philippe; Bottin, François; Joubert, Jean-Marc; Oudot, Benoit (2022). "Tin (Sn) at high pressure: Review, X-ray diffraction, DFT calculations, and Gibbs energy modeling". Journal of Alloys and Compounds. 919: 165675. arXiv:2203.16240. doi:10.1016/j.jallcom.2022.165675. /wiki/ArXiv_(identifier)
Molodets, A. M.; Nabatov, S. S. (2000). "Thermodynamic Potentials, Diagram of State, and Phase Transitions of Tin on Shock Compression". High Temperature. 38 (5): 715–721. Bibcode:2000HTemp..38..715M. doi:10.1007/BF02755923. S2CID 120417927. /wiki/Bibcode_(identifier)
Deffrennes, Guillaume; Faure, Philippe; Bottin, François; Joubert, Jean-Marc; Oudot, Benoit (2022). "Tin (Sn) at high pressure: Review, X-ray diffraction, DFT calculations, and Gibbs energy modeling". Journal of Alloys and Compounds. 919: 165675. arXiv:2203.16240. doi:10.1016/j.jallcom.2022.165675. /wiki/ArXiv_(identifier)
Benedict, U.; Haire, R. G.; Peterson, J. R.; Itie, J. P. (1985). "Delocalisation of 5f electrons in curium metal under high pressure". Journal of Physics F: Metal Physics. 15 (2): L29 – L35. Bibcode:1985JPhF...15L..29B. doi:10.1088/0305-4608/15/2/002. /wiki/Bibcode_(identifier)
Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr (2017-10-27). "Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices". Science. 358 (6362): 514–518. Bibcode:2017Sci...358..514U. doi:10.1126/science.aan6046. hdl:10067/1472420151162165141. ISSN 0036-8075. PMID 29074773. https://doi.org/10.1126%2Fscience.aan6046
"Materials That Don't Exist in Nature Might Lead to New Fabrication Techniques". israelbds.org. Archived from the original on 2017-12-09. Retrieved 2017-12-08. https://web.archive.org/web/20171209152005/http://israelbds.org/materials-that-dont-exist-in-nature-might-lead-to-new-fabrication-techniques/
"Materials That Don't Exist in Nature Might Lead to New Fabrication Techniques". israelbds.org. Archived from the original on 2017-12-09. Retrieved 2017-12-08. https://web.archive.org/web/20171209152005/http://israelbds.org/materials-that-dont-exist-in-nature-might-lead-to-new-fabrication-techniques/
Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr (2017-10-27). "Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices". Science. 358 (6362): 514–518. Bibcode:2017Sci...358..514U. doi:10.1126/science.aan6046. hdl:10067/1472420151162165141. ISSN 0036-8075. PMID 29074773. https://doi.org/10.1126%2Fscience.aan6046
"Materials That Don't Exist in Nature Might Lead to New Fabrication Techniques". israelbds.org. Archived from the original on 2017-12-09. Retrieved 2017-12-08. https://web.archive.org/web/20171209152005/http://israelbds.org/materials-that-dont-exist-in-nature-might-lead-to-new-fabrication-techniques/