The term "cytosol" was first introduced in 1965 by H. A. Lardy, and initially referred to the liquid that was produced by breaking cells apart and pelleting all the insoluble components by ultracentrifugation. Such a soluble cell extract is not identical to the soluble part of the cell cytoplasm and is usually called a cytoplasmic fraction.
Prior to this, other terms, including hyaloplasm, were used for the cell fluid, not always synonymously, as its nature was not well understood (see protoplasm).
The proportion of cell volume that is cytosol varies: for example while this compartment forms the bulk of cell structure in bacteria, in plant cells the main compartment is the large central vacuole. The cytosol consists mostly of water, dissolved ions, small molecules, and large water-soluble molecules (such as proteins). The majority of these non-protein molecules have a molecular mass of less than 300 Da. This mixture of small molecules is extraordinarily complex, as the variety of molecules that are involved in metabolism (the metabolites) is immense. For example, up to 200,000 different small molecules might be made in plants, although not all these will be present in the same species, or in a single cell. Estimates of the number of metabolites in single cells such as E. coli and baker's yeast predict that under 1,000 are made.
Although water is vital for life, the structure of this water in the cytosol is not well understood, mostly because methods such as nuclear magnetic resonance spectroscopy only give information on the average structure of water, and cannot measure local variations at the microscopic scale. Even the structure of pure water is poorly understood, due to the ability of water to form structures such as water clusters through hydrogen bonds.
The classic view of water in cells is that about 5% of this water is strongly bound in by solutes or macromolecules as water of solvation, while the majority has the same structure as pure water. This water of solvation is not active in osmosis and may have different solvent properties, so that some dissolved molecules are excluded, while others become concentrated. However, others argue that the effects of the high concentrations of macromolecules in cells extend throughout the cytosol and that water in cells behaves very differently from the water in dilute solutions. These ideas include the proposal that cells contain zones of low and high-density water, which could have widespread effects on the structures and functions of the other parts of the cell. However, the use of advanced nuclear magnetic resonance methods to directly measure the mobility of water in living cells contradicts this idea, as it suggests that 85% of cell water acts like that pure water, while the remainder is less mobile and probably bound to macromolecules.
Although the components of the cytosol are not separated into regions by cell membranes, these components do not always mix randomly and several levels of organization can localize specific molecules to defined sites within the cytosol.
Some protein complexes contain a large central cavity that is isolated from the remainder of the cytosol. One example of such an enclosed compartment is the proteasome. Here, a set of subunits form a hollow barrel containing proteases that degrade cytosolic proteins. Since these would be damaging if they mixed freely with the remainder of the cytosol, the barrel is capped by a set of regulatory proteins that recognize proteins with a signal directing them for degradation (a ubiquitin tag) and feed them into the proteolytic cavity.
The cytosol is the site of multiple cell processes. Examples of these processes include signal transduction from the cell membrane to sites within the cell, such as the cell nucleus, or organelles. This compartment is also the site of many of the processes of cytokinesis, after the breakdown of the nuclear membrane in mitosis. Another major function of cytosol is to transport metabolites from their site of production to where they are used. This is relatively simple for water-soluble molecules, such as amino acids, which can diffuse rapidly through the cytosol. However, hydrophobic molecules, such as fatty acids or sterols, can be transported through the cytosol by specific binding proteins, which shuttle these molecules between cell membranes. Molecules taken into the cell by endocytosis or on their way to be secreted can also be transported through the cytosol inside vesicles, which are small spheres of lipids that are moved along the cytoskeleton by motor proteins.
The cytosol is the site of most metabolism in prokaryotes, and a large proportion of the metabolism of eukaryotes. For instance, in mammals about half of the proteins in the cell are localized to the cytosol. The most complete data are available in yeast, where metabolic reconstructions indicate that the majority of both metabolic processes and metabolites occur in the cytosol. Major metabolic pathways that occur in the cytosol in animals are protein biosynthesis, the pentose phosphate pathway, glycolysis and gluconeogenesis. The localization of pathways can be different in other organisms, for instance fatty acid synthesis occurs in chloroplasts in plants and in apicoplasts in apicomplexa.
Cammack, Richard; Atwood, Teresa; Campbell, Peter; Parish, Howard; Smith, Anthony; Vella, Frank; Stirling, John (2006). Cammack, Richard; Atwood, Teresa; Campbell, Peter; Parish, Howard; Smith, Anthony; Vella, Frank; Stirling, John (eds.). "Cytoplasmic matrix". Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press. doi:10.1093/acref/9780198529170.001.0001. ISBN 9780198529170. 9780198529170
Liachovitzky, Carlos (2015). "Human Anatomy and Physiology Preparatory Course" (pdf). Open Educational Resources. CUNY Academic Works: 69. Archived from the original on 2017-08-23. Retrieved 2021-06-22. https://academicworks.cuny.edu/bx_oers/1/
Lardry, H. A. 1969. On the direction of pyridine nucleotide oxidation-reduction reactions in gluconeogenesis and lipogenesis. In: Control of energy metabolism, edited by B. Chance, R. Estabrook, and J. R. Williamson. New York: Academic, 1965, p. 245, [1]. https://books.google.com/books?id=MUueBQAAQBAJ
Clegg James S. (1984). "Properties and metabolism of the aqueous cytoplasm and its boundaries". Am. J. Physiol. 246 (2 Pt 2): R133–51. doi:10.1152/ajpregu.1984.246.2.R133. PMID 6364846. S2CID 30351411. /wiki/James_S._Clegg
Cammack, Richard; Teresa Atwood; Attwood, Teresa K.; Campbell, Peter Scott; Parish, Howard I.; Smith, Tony; Vella, Frank; Stirling, John (2006). Oxford dictionary of biochemistry and molecular biology. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-852917-1. OCLC 225587597. 0-19-852917-1
Cammack, Richard; Teresa Atwood; Attwood, Teresa K.; Campbell, Peter Scott; Parish, Howard I.; Smith, Tony; Vella, Frank; Stirling, John (2006). Oxford dictionary of biochemistry and molecular biology. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-852917-1. OCLC 225587597. 0-19-852917-1
Lodish, Harvey F. (1999). Molecular cell biology. New York: Scientific American Books. ISBN 0-7167-3136-3. OCLC 174431482. 0-7167-3136-3
Clegg James S. (1984). "Properties and metabolism of the aqueous cytoplasm and its boundaries". Am. J. Physiol. 246 (2 Pt 2): R133–51. doi:10.1152/ajpregu.1984.246.2.R133. PMID 6364846. S2CID 30351411. /wiki/James_S._Clegg
Hanstein, J. (1880). Das Protoplasma. Heidelberg. p. 24. https://archive.org/details/DasProtoplasma
Cammack, Richard; Teresa Atwood; Attwood, Teresa K.; Campbell, Peter Scott; Parish, Howard I.; Smith, Tony; Vella, Frank; Stirling, John (2006). Oxford dictionary of biochemistry and molecular biology. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-852917-1. OCLC 225587597. 0-19-852917-1
Hoppert M, Mayer F (1999). "Principles of macromolecular organization and cell function in bacteria and archaea". Cell Biochem. Biophys. 31 (3): 247–84. doi:10.1007/BF02738242. PMID 10736750. S2CID 21004307. /wiki/Doi_(identifier)
Bowsher CG, Tobin AK (April 2001). "Compartmentation of metabolism within mitochondria and plastids". J. Exp. Bot. 52 (356): 513–27. doi:10.1093/jexbot/52.356.513. PMID 11373301. https://doi.org/10.1093%2Fjexbot%2F52.356.513
Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (May 2004). "Metabolomics by numbers: acquiring and understanding global metabolite data" (PDF). Trends Biotechnol. 22 (5): 245–52. doi:10.1016/j.tibtech.2004.03.007. PMID 15109811. Archived from the original (PDF) on 2008-12-17. https://web.archive.org/web/20081217001301/http://personalpages.manchester.ac.uk/staff/roy.goodacre/learning/metabprof/Goodacre-TibTech2004.pdf
Weckwerth W (2003). "Metabolomics in systems biology". Annu Rev Plant Biol. 54: 669–89. doi:10.1146/annurev.arplant.54.031902.135014. PMID 14503007. S2CID 1197884. /wiki/Annu_Rev_Plant_Biol
Reed JL, Vo TD, Schilling CH, Palsson BO (2003). "An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR)". Genome Biol. 4 (9): R54. doi:10.1186/gb-2003-4-9-r54. PMC 193654. PMID 12952533. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC193654
Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (February 2003). "Genome-Scale Reconstruction of the Saccharomyces cerevisiae Metabolic Network". Genome Res. 13 (2): 244–53. doi:10.1101/gr.234503. PMC 420374. PMID 12566402. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC420374
Luby-Phelps K (2000). "Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area" (PDF). Int. Rev. Cytol. International Review of Cytology. 192: 189–221. doi:10.1016/S0074-7696(08)60527-6. ISBN 978-0-12-364596-8. PMID 10553280. Archived from the original (PDF) on 2011-07-19. 978-0-12-364596-8
Roos A, Boron WF (April 1981). "Intracellular pH". Physiol. Rev. 61 (2): 296–434. doi:10.1152/physrev.1981.61.2.296. PMID 7012859. /wiki/Doi_(identifier)
Bright, G R; Fisher, GW; Rogowska, J; Taylor, DL (1987). "Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH". The Journal of Cell Biology. 104 (4): 1019–1033. doi:10.1083/jcb.104.4.1019. PMC 2114443. PMID 3558476. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114443
Verkman AS (January 2002). "Solute and macromolecule diffusion in cellular aqueous compartments". Trends Biochem. Sci. 27 (1): 27–33. doi:10.1016/S0968-0004(01)02003-5. PMID 11796221. /wiki/Doi_(identifier)
Clegg James S. (1984). "Properties and metabolism of the aqueous cytoplasm and its boundaries". Am. J. Physiol. 246 (2 Pt 2): R133–51. doi:10.1152/ajpregu.1984.246.2.R133. PMID 6364846. S2CID 30351411. /wiki/James_S._Clegg
Wiggins PM (1 December 1990). "Role of water in some biological processes". Microbiol. Rev. 54 (4): 432–49. doi:10.1128/MMBR.54.4.432-449.1990. PMC 372788. PMID 2087221. /wiki/Philippa_Wiggins
Clegg James S. (1984). "Properties and metabolism of the aqueous cytoplasm and its boundaries". Am. J. Physiol. 246 (2 Pt 2): R133–51. doi:10.1152/ajpregu.1984.246.2.R133. PMID 6364846. S2CID 30351411. /wiki/James_S._Clegg
Fulton AB (September 1982). "How crowded is the cytoplasm?". Cell. 30 (2): 345–7. doi:10.1016/0092-8674(82)90231-8. PMID 6754085. S2CID 6370250. /wiki/Doi_(identifier)
Garlid KD (2000). "The state of water in biological systems". Int. Rev. Cytol. International Review of Cytology. 192: 281–302. doi:10.1016/S0074-7696(08)60530-6. ISBN 978-0-12-364596-8. PMID 10553283. 978-0-12-364596-8
Chaplin M (November 2006). "Do we underestimate the importance of water in cell biology?". Nat. Rev. Mol. Cell Biol. 7 (11): 861–6. doi:10.1038/nrm2021. PMID 16955076. S2CID 42919563. /wiki/Doi_(identifier)
Wiggins PM (1 December 1990). "Role of water in some biological processes". Microbiol. Rev. 54 (4): 432–49. doi:10.1128/MMBR.54.4.432-449.1990. PMC 372788. PMID 2087221. /wiki/Philippa_Wiggins
Wiggins PM (June 1996). "High and low density water and resting, active and transformed cells". Cell Biol. Int. 20 (6): 429–35. doi:10.1006/cbir.1996.0054. PMID 8963257. S2CID 42866068. /wiki/Philippa_Wiggins
Persson E, Halle B (April 2008). "Cell water dynamics on multiple time scales". Proc. Natl. Acad. Sci. U.S.A. 105 (17): 6266–71. Bibcode:2008PNAS..105.6266P. doi:10.1073/pnas.0709585105. PMC 2359779. PMID 18436650. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359779
Lodish, Harvey F. (1999). Molecular cell biology. New York: Scientific American Books. ISBN 0-7167-3136-3. OCLC 174431482. 0-7167-3136-3
Thier, S. O. (April 25, 1986). "Potassium physiology". The American Journal of Medicine. 80 (4A): 3–7. doi:10.1016/0002-9343(86)90334-7. PMID 3706350. /wiki/Doi_(identifier)
Lote, Christopher J. (2012). Principles of Renal Physiology, 5th edition. Springer. p. 12.
Lang F (October 2007). "Mechanisms and significance of cell volume regulation". J Am Coll Nutr. 26 (5 Suppl): 613S – 623S. doi:10.1080/07315724.2007.10719667. PMID 17921474. S2CID 1798009. /wiki/Doi_(identifier)
Lang F (October 2007). "Mechanisms and significance of cell volume regulation". J Am Coll Nutr. 26 (5 Suppl): 613S – 623S. doi:10.1080/07315724.2007.10719667. PMID 17921474. S2CID 1798009. /wiki/Doi_(identifier)
Lang F (October 2007). "Mechanisms and significance of cell volume regulation". J Am Coll Nutr. 26 (5 Suppl): 613S – 623S. doi:10.1080/07315724.2007.10719667. PMID 17921474. S2CID 1798009. /wiki/Doi_(identifier)
Sussich F, Skopec C, Brady J, Cesàro A (August 2001). "Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal?". Carbohydr. Res. 334 (3): 165–76. doi:10.1016/S0008-6215(01)00189-6. PMID 11513823. /wiki/Doi_(identifier)
Crowe JH, Carpenter JF, Crowe LM (1998). "The role of vitrification in anhydrobiosis". Annu. Rev. Physiol. 60: 73–103. doi:10.1146/annurev.physiol.60.1.73. PMID 9558455. /wiki/Annu._Rev._Physiol.
Berridge MJ (1 March 1997). "Elementary and global aspects of calcium signalling". J. Physiol. 499 (Pt 2): 291–306. doi:10.1113/jphysiol.1997.sp021927. PMC 1159305. PMID 9080360. http://www.jphysiol.org/cgi/pmidlookup?view=long&pmid=9080360
Kikkawa U, Kishimoto A, Nishizuka Y (1989). "The protein kinase C family: heterogeneity and its implications". Annu. Rev. Biochem. 58: 31–44. doi:10.1146/annurev.bi.58.070189.000335. PMID 2549852. /wiki/Annu._Rev._Biochem.
Orlov SN, Hamet P (April 2006). "Intracellular monovalent ions as second messengers". J. Membr. Biol. 210 (3): 161–72. doi:10.1007/s00232-006-0857-9. PMID 16909338. S2CID 26068558. /wiki/Doi_(identifier)
Ellis RJ (October 2001). "Macromolecular crowding: obvious but underappreciated". Trends Biochem. Sci. 26 (10): 597–604. doi:10.1016/S0968-0004(01)01938-7. PMID 11590012. /wiki/Doi_(identifier)
Clegg James S. (1984). "Properties and metabolism of the aqueous cytoplasm and its boundaries". Am. J. Physiol. 246 (2 Pt 2): R133–51. doi:10.1152/ajpregu.1984.246.2.R133. PMID 6364846. S2CID 30351411. /wiki/James_S._Clegg
Hudder A, Nathanson L, Deutscher MP (December 2003). "Organization of Mammalian Cytoplasm". Mol. Cell. Biol. 23 (24): 9318–26. doi:10.1128/MCB.23.24.9318-9326.2003. PMC 309675. PMID 14645541. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC309675
Heuser J (2002). "Whatever happened to the 'microtrabecular concept'?". Biol Cell. 94 (9): 561–96. doi:10.1016/S0248-4900(02)00013-8. PMID 12732437. S2CID 45792524. /wiki/Doi_(identifier)
Thanbichler M, Wang S, Shapiro L (2005). "The bacterial nucleoid: a highly organized and dynamic structure". J Cell Biochem. 96 (3): 506–21. doi:10.1002/jcb.20519. PMID 15988757. S2CID 25355087. https://doi.org/10.1002%2Fjcb.20519
Peters R (2006). "Introduction to Nucleocytoplasmic Transport". Xenopus Protocols. Methods in Molecular Biology. Vol. 322. pp. 235–58. doi:10.1007/978-1-59745-000-3_17. ISBN 978-1-58829-362-6. PMID 16739728. 978-1-58829-362-6
Ellis RJ (October 2001). "Macromolecular crowding: obvious but underappreciated". Trends Biochem. Sci. 26 (10): 597–604. doi:10.1016/S0968-0004(01)01938-7. PMID 11590012. /wiki/Doi_(identifier)
Zhou HX, Rivas G, Minton AP (2008). "Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences". Annu Rev Biophys. 37: 375–97. doi:10.1146/annurev.biophys.37.032807.125817. PMC 2826134. PMID 18573087. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826134
Norris V, den Blaauwen T, Cabin-Flaman A (March 2007). "Functional Taxonomy of Bacterial Hyperstructures". Microbiol. Mol. Biol. Rev. 71 (1): 230–53. doi:10.1128/MMBR.00035-06. PMC 1847379. PMID 17347523. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847379
Wang SQ, Wei C, Zhao G (April 2004). "Imaging microdomain Ca2+ in muscle cells". Circ. Res. 94 (8): 1011–22. doi:10.1161/01.RES.0000125883.68447.A1. PMID 15117829. https://doi.org/10.1161%2F01.RES.0000125883.68447.A1
Jaffe LF (November 1993). "Classes and mechanisms of calcium waves". Cell Calcium. 14 (10): 736–45. doi:10.1016/0143-4160(93)90099-R. PMID 8131190. /wiki/Cell_Calcium
Aw, T.Y. (2000). "Intracellular compartmentation of organelles and gradients of low molecular weight species". Int Rev Cytol. International Review of Cytology. 192: 223–53. doi:10.1016/S0074-7696(08)60528-8. ISBN 978-0-12-364596-8. PMID 10553281. 978-0-12-364596-8
Weiss JN, Korge P (20 July 2001). "The cytoplasm: no longer a well-mixed bag". Circ. Res. 89 (2): 108–10. doi:10.1161/res.89.2.108. PMID 11463714. https://doi.org/10.1161%2Fres.89.2.108
Srere PA (1987). "Complexes of sequential metabolic enzymes". Annu. Rev. Biochem. 56: 89–124. doi:10.1146/annurev.bi.56.070187.000513. PMID 2441660. /wiki/Annu._Rev._Biochem.
Perham RN (2000). "Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions". Annu. Rev. Biochem. 69: 961–1004. doi:10.1146/annurev.biochem.69.1.961. PMID 10966480. /wiki/Annu._Rev._Biochem.
Huang X, Holden HM, Raushel FM (2001). "Channeling of substrates and intermediates in enzyme-catalyzed reactions". Annu. Rev. Biochem. 70: 149–80. doi:10.1146/annurev.biochem.70.1.149. PMID 11395405. S2CID 16722363. /wiki/Annu._Rev._Biochem.
Mowbray J, Moses V (June 1976). "The tentative identification in Escherichia coli of a multienzyme complex with glycolytic activity". Eur. J. Biochem. 66 (1): 25–36. doi:10.1111/j.1432-1033.1976.tb10421.x. PMID 133800. /wiki/Doi_(identifier)
Srivastava DK, Bernhard SA (November 1986). "Metabolite transfer via enzyme-enzyme complexes". Science. 234 (4780): 1081–6. Bibcode:1986Sci...234.1081S. doi:10.1126/science.3775377. PMID 3775377. /wiki/Bibcode_(identifier)
Groll M, Clausen T (December 2003). "Molecular shredders: how proteasomes fulfill their role". Curr. Opin. Struct. Biol. 13 (6): 665–73. doi:10.1016/j.sbi.2003.10.005. PMID 14675543. /wiki/Doi_(identifier)
Nandi D, Tahiliani P, Kumar A, Chandu D (March 2006). "The ubiquitin-proteasome system" (PDF). J. Biosci. 31 (1): 137–55. doi:10.1007/BF02705243. PMID 16595883. S2CID 21603835. Archived (PDF) from the original on 2006-07-02. http://www.ias.ac.in/jbiosci/mar2006/137.pdf
Bobik, T. A. (2007). "Bacterial Microcompartments" (PDF). Microbe. 2. Am Soc Microbiol: 25–31. Archived from the original (PDF) on 2008-08-02. https://web.archive.org/web/20080802025916/http://www.asm.org/ASM/files/ccLibraryFiles/Filename/000000002765/znw00107000025.pdf
Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (August 2008). "Protein-based organelles in bacteria: carboxysomes and related microcompartments". Nat. Rev. Microbiol. 6 (9): 681–691. doi:10.1038/nrmicro1913. PMID 18679172. S2CID 22666203. /wiki/Doi_(identifier)
Badger MR, Price GD (February 2003). "CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution". J. Exp. Bot. 54 (383): 609–22. doi:10.1093/jxb/erg076. PMID 12554704. https://doi.org/10.1093%2Fjxb%2Ferg076
Cate JH (November 2001). "Construction of low-resolution x-ray crystallographic electron density maps of the ribosome". Methods. 25 (3): 303–8. doi:10.1006/meth.2001.1242. PMID 11860284. https://zenodo.org/record/1229926
Provance DW, McDowall A, Marko M, Luby-Phelps K (1 October 1993). "Cytoarchitecture of size-excluding compartments in living cells". J. Cell Sci. 106 (2): 565–77. doi:10.1242/jcs.106.2.565. PMID 7980739. http://jcs.biologists.org/cgi/pmidlookup?view=long&pmid=7980739
Luby-Phelps K, Castle PE, Taylor DL, Lanni F (July 1987). "Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells". Proc. Natl. Acad. Sci. U.S.A. 84 (14): 4910–3. Bibcode:1987PNAS...84.4910L. doi:10.1073/pnas.84.14.4910. PMC 305216. PMID 3474634. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC305216
Luby-Phelps K (June 1993). "Effect of cytoarchitecture on the transport and localization of protein synthetic machinery". J. Cell. Biochem. 52 (2): 140–7. doi:10.1002/jcb.240520205. PMID 8366131. S2CID 12063324. /wiki/Doi_(identifier)
Kholodenko BN (June 2003). "Four-dimensional organization of protein kinase signaling cascades: the roles of diffusion, endocytosis and molecular motors". J. Exp. Biol. 206 (Pt 12): 2073–82. doi:10.1242/jeb.00298. PMID 12756289. S2CID 18002214. /wiki/Doi_(identifier)
Pesaresi P, Schneider A, Kleine T, Leister D (December 2007). "Interorganellar communication". Curr. Opin. Plant Biol. 10 (6): 600–6. doi:10.1016/j.pbi.2007.07.007. PMID 17719262. /wiki/Doi_(identifier)
Winey M, Mamay CL, O'Toole ET (June 1995). "Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle". J. Cell Biol. 129 (6): 1601–15. doi:10.1083/jcb.129.6.1601. PMC 2291174. PMID 7790357. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291174
Verkman AS (January 2002). "Solute and macromolecule diffusion in cellular aqueous compartments". Trends Biochem. Sci. 27 (1): 27–33. doi:10.1016/S0968-0004(01)02003-5. PMID 11796221. /wiki/Doi_(identifier)
Weisiger RA (October 2002). "Cytosolic fatty acid binding proteins catalyze two distinct steps in intracellular transport of their ligands". Mol. Cell. Biochem. 239 (1–2): 35–43. doi:10.1023/A:1020550405578. PMID 12479566. S2CID 9608133. /wiki/Doi_(identifier)
Maxfield FR, Mondal M (June 2006). "Sterol and lipid trafficking in mammalian cells". Biochem. Soc. Trans. 34 (Pt 3): 335–9. doi:10.1042/BST0340335. PMID 16709155. /wiki/Doi_(identifier)
Pelham HR (August 1999). "The Croonian Lecture 1999. Intracellular membrane traffic: getting proteins sorted". Philos. Trans. R. Soc. Lond. B Biol. Sci. 354 (1388): 1471–8. doi:10.1098/rstb.1999.0491. PMC 1692657. PMID 10515003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692657
Kamal A, Goldstein LS (February 2002). "Principles of cargo attachment to cytoplasmic motor proteins". Curr. Opin. Cell Biol. 14 (1): 63–8. doi:10.1016/S0955-0674(01)00295-2. PMID 11792546. /wiki/Doi_(identifier)
Hoppert M, Mayer F (1999). "Principles of macromolecular organization and cell function in bacteria and archaea". Cell Biochem. Biophys. 31 (3): 247–84. doi:10.1007/BF02738242. PMID 10736750. S2CID 21004307. /wiki/Doi_(identifier)
Foster LJ, de Hoog CL, Zhang Y (April 2006). "A mammalian organelle map by protein correlation profiling". Cell. 125 (1): 187–99. doi:10.1016/j.cell.2006.03.022. PMID 16615899. S2CID 32197. https://doi.org/10.1016%2Fj.cell.2006.03.022
Herrgård, MJ; Swainston, N; Dobson, P; Dunn, WB; Arga, KY; Arvas, M; Blüthgen, N; Borger, S; Costenoble, R; et al. (October 2008). "A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology". Nature Biotechnology. 26 (10): 1155–60. doi:10.1038/nbt1492. PMC 4018421. PMID 18846089. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4018421
Stryer, Lubert; Berg, Jeremy Mark; Tymoczko, John L. (2002). Biochemistry. San Francisco: W.H. Freeman. ISBN 0-7167-4684-0. OCLC 179705944. 0-7167-4684-0
Ohlrogge J, Pollard M, Bao X (December 2000). "Fatty acid synthesis: from CO2 to functional genomics". Biochem. Soc. Trans. 28 (6): 567–73. doi:10.1042/BST0280567. PMID 11171129. /wiki/Doi_(identifier)
Ohlrogge JB, Kuhn DN, Stumpf PK (March 1979). "Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea". Proc. Natl. Acad. Sci. U.S.A. 76 (3): 1194–8. Bibcode:1979PNAS...76.1194O. doi:10.1073/pnas.76.3.1194. PMC 383216. PMID 286305. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC383216
Goodman CD, McFadden GI (January 2007). "Fatty acid biosynthesis as a drug target in apicomplexan parasites". Curr Drug Targets. 8 (1): 15–30. doi:10.2174/138945007779315579. PMID 17266528. S2CID 2565225. /wiki/Doi_(identifier)