Insoluble salts can be precipitated by mixing two solutions, one with the cation and one with the anion in it. Because all solutions are electrically neutral, the two solutions mixed must also contain counterions of the opposite charges. To ensure that these do not contaminate the precipitated salt, it is important to ensure they do not also precipitate. If the two solutions have hydrogen ions and hydroxide ions as the counterions, they will react with one another in what is called an acid–base reaction or a neutralization reaction to form water. Alternately the counterions can be chosen to ensure that even when combined into a single solution they will remain soluble as spectator ions.
If the solvent is water in either the evaporation or precipitation method of formation, in many cases the ionic crystal formed also includes water of crystallization, so the product is known as a hydrate, and can have very different chemical properties compared to the anhydrous material.
Although chemists classify idealized bond types as being ionic or covalent, the existence of additional types such as hydrogen bonds and metallic bonds, for example, has led some philosophers of science to suggest that alternative approaches to understanding bonding are required. This could be by applying quantum mechanics to calculate binding energies.
The lattice energy is the summation of the interaction of all sites with all other sites. For unpolarizable spherical ions, only the charges and distances are required to determine the electrostatic interaction energy. For any particular ideal crystal structure, all distances are geometrically related to the smallest internuclear distance. So for each possible crystal structure, the total electrostatic energy can be related to the electrostatic energy of unit charges at the nearest neighboring distance by a multiplicative constant called the Madelung constant that can be efficiently computed using an Ewald sum. When a reasonable form is assumed for the additional repulsive energy, the total lattice energy can be modelled using the Born–Landé equation, the Born–Mayer equation, or in the absence of structural information, the Kapustinskii equation.
Using an even simpler approximation of the ions as impenetrable hard spheres, the arrangement of anions in these systems are often related to close-packed arrangements of spheres, with the cations occupying tetrahedral or octahedral interstices. Depending on the stoichiometry of the salt, and the coordination (principally determined by the radius ratio) of cations and anions, a variety of structures are commonly observed, and theoretically rationalized by Pauling's rules.
Common ionic compound structures with close-packed anionsIn some cases, the anions take on a simple cubic packing and the resulting common structures observed are:
Common ionic compound structures with simple cubic packed anionsWithin any crystal, there will usually be some defects. To maintain electroneutrality of the crystals, defects that involve loss of a cation will be associated with loss of an anion, i.e. these defects come in pairs. Frenkel defects consist of a cation vacancy paired with a cation interstitial and can be generated anywhere in the bulk of the crystal, occurring most commonly in compounds with a low coordination number and cations that are much smaller than the anions. Schottky defects consist of one vacancy of each type, and are generated at the surfaces of a crystal, occurring most commonly in compounds with a high coordination number and when the anions and cations are of similar size. If the cations have multiple possible oxidation states, then it is possible for cation vacancies to compensate for electron deficiencies on cation sites with higher oxidation numbers, resulting in a non-stoichiometric compound. Another non-stoichiometric possibility is the formation of an F-center, a free electron occupying an anion vacancy. When the compound has three or more ionic components, even more defect types are possible. All of these point defects can be generated via thermal vibrations and have an equilibrium concentration. Because they are energetically costly but entropically beneficial, they occur in greater concentration at higher temperatures. Once generated, these pairs of defects can diffuse mostly independently of one another, by hopping between lattice sites. This defect mobility is the source of most transport phenomena within an ionic crystal, including diffusion and solid state ionic conductivity. When vacancies collide with interstitials (Frenkel), they can recombine and annihilate one another. Similarly, vacancies are removed when they reach the surface of the crystal (Schottky). Defects in the crystal structure generally expand the lattice parameters, reducing the overall density of the crystal. Defects also result in ions in distinctly different local environments, which causes them to experience a different crystal-field symmetry, especially in the case of different cations exchanging lattice sites. This results in a different splitting of d-electron orbitals, so that the optical absorption (and hence colour) can change with defect concentration.
Electrostatic forces between particles are strongest when the charges are high, and the distance between the nuclei of the ions is small. In such cases, the compounds generally have very high melting and boiling points and a low vapour pressure. Trends in melting points can be even better explained when the structure and ionic size ratio is taken into account. Above their melting point, salts melt and become molten salts (although some salts such as aluminium chloride and iron(III) chloride show molecule-like structures in the liquid phase). Inorganic compounds with simple ions typically have small ions, and thus have high melting points, so are solids at room temperature. Some substances with larger ions, however, have a melting point below or near room temperature (often defined as up to 100 °C), and are termed ionic liquids. Ions in ionic liquids often have uneven charge distributions, or bulky substituents like hydrocarbon chains, which also play a role in determining the strength of the interactions and propensity to melt.
Even when the local structure and bonding of an ionic solid is disrupted sufficiently to melt it, there are still strong long-range electrostatic forces of attraction holding the liquid together and preventing ions boiling to form a gas phase. This means that even room temperature ionic liquids have low vapour pressures, and require substantially higher temperatures to boil. Boiling points exhibit similar trends to melting points in terms of the size of ions and strength of other interactions. When vapourized, the ions are still not freed of one another. For example, in the vapour phase sodium chloride exists as diatomic "molecules".
Strong salts start with Na__, K__, NH4__, or they end with __NO3, __ClO4, or __CH3COO. Most group 1 and 2 metals form strong salts. Strong salts are especially useful when creating conductive compounds as their constituent ions allow for greater conductivity.
The anions in compounds with bonds with the most ionic character tend to be colorless (with an absorption band in the ultraviolet part of the spectrum). In compounds with less ionic character, their color deepens through yellow, orange, red, and black (as the absorption band shifts to longer wavelengths into the visible spectrum).
The absorption band of simple cations shifts toward a shorter wavelength when they are involved in more covalent interactions. This occurs during hydration of metal ions, so colorless anhydrous salts with an anion absorbing in the infrared can become colorful in solution.
The chemical identity of the ions added is also important in many uses. For example, fluoride containing compounds are dissolved to supply fluoride ions for water fluoridation.
Solid salts have long been used as paint pigments, and are resistant to organic solvents, but are sensitive to acidity or basicity. Since 1801 pyrotechnicians have described and widely used metal-containing salts as sources of colour in fireworks. Under intense heat, the electrons in the metal ions or small molecules can be excited. These electrons later return to lower energy states, and release light with a colour spectrum characteristic of the species present.
Compounds containing one or more elements which can exist in a variety of charge/oxidation states will have a stoichiometry that depends on which oxidation states are present, to ensure overall neutrality. This can be indicated in the name by specifying either the oxidation state of the elements present, or the charge on the ions. Because of the risk of ambiguity in allocating oxidation states, IUPAC prefers direct indication of the ionic charge numbers. These are written as an arabic integer followed by the sign (... , 2−, 1−, 1+, 2+, ...) in parentheses directly after the name of the cation (without a space separating them). For example, FeSO4 is named iron(2+) sulfate (with the 2+ charge on the Fe2+ ions balancing the 2− charge on the sulfate ion), whereas Fe2(SO4)3 is named iron(3+) sulfate (because the two iron ions in each formula unit each have a charge of 3+, to balance the 2− on each of the three sulfate ions). Stock nomenclature, still in common use, writes the oxidation number in Roman numerals (... , −II, −I, 0, I, II, ...). So the examples given above would be named iron(II) sulfate and iron(III) sulfate respectively. For simple ions the ionic charge and the oxidation number are identical, but for polyatomic ions they often differ. For example, the uranyl(2+) ion, UO2+2, has uranium in an oxidation state of +6, so would be called a dioxouranium(VI) ion in Stock nomenclature. An even older naming system for metal cations, also still widely used, appended the suffixes -ous and -ic to the Latin root of the name, to give special names for the low and high oxidation states. For example, this scheme uses "ferrous" and "ferric", for iron(II) and iron(III) respectively, so the examples given above were classically named ferrous sulfate and ferric sulfate.
Common salt-forming anions (parent acids in parentheses where available) include:
Salts with varying number of hydrogen atoms replaced by cations as compared to their parent acid can be referred to as monobasic, dibasic, or tribasic, identifying that one, two, or three hydrogen atoms have been replaced; polybasic salts refer to those with more than one hydrogen atom replaced. Examples include:
IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "salt". doi:10.1351/goldbook.S05447 /wiki/International_Union_of_Pure_and_Applied_Chemistry
Bragg, W. H.; Bragg, W. L. (1 July 1913). "The Reflection of X-rays by Crystals". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 88 (605): 428–438. Bibcode:1913RSPSA..88..428B. doi:10.1098/rspa.1913.0040. S2CID 13112732. /wiki/Bibcode_(identifier)
Bragg, W. H. (22 September 1913). "The Reflection of X-rays by Crystals. (II.)". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 89 (610): 246–248. Bibcode:1913RSPSA..89..246B. doi:10.1098/rspa.1913.0082. https://doi.org/10.1098%2Frspa.1913.0082
Sherman, Jack (August 1932). "Crystal Energies of Ionic Compounds and Thermochemical Applications". Chemical Reviews. 11 (1): 93–170. doi:10.1021/cr60038a002. /wiki/Doi_(identifier)
Sherman, Jack (August 1932). "Crystal Energies of Ionic Compounds and Thermochemical Applications". Chemical Reviews. 11 (1): 93–170. doi:10.1021/cr60038a002. /wiki/Doi_(identifier)
Sherman, Jack (August 1932). "Crystal Energies of Ionic Compounds and Thermochemical Applications". Chemical Reviews. 11 (1): 93–170. doi:10.1021/cr60038a002. /wiki/Doi_(identifier)
Sherman, Jack (August 1932). "Crystal Energies of Ionic Compounds and Thermochemical Applications". Chemical Reviews. 11 (1): 93–170. doi:10.1021/cr60038a002. /wiki/Doi_(identifier)
James, R. W.; Brindley, G. W. (1 November 1928). "A Quantitative Study of the Reflexion of X-Rays by Sylvine". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 121 (787): 155–171. Bibcode:1928RSPSA.121..155J. doi:10.1098/rspa.1928.0188. https://doi.org/10.1098%2Frspa.1928.0188
Pauling 1960, p. 505. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Sherman, Jack (August 1932). "Crystal Energies of Ionic Compounds and Thermochemical Applications". Chemical Reviews. 11 (1): 93–170. doi:10.1021/cr60038a002. /wiki/Doi_(identifier)
Zumdahl 1989, p. 312. - Zumdahl, Steven S. (1989). Chemistry (2nd ed.). Lexington, Mass.: D.C. Heath. ISBN 978-0-669-16708-5. https://archive.org/details/experimentalchem0000hall
Wold & Dwight 1993, p. 71. - Wold, Aaron; Dwight, Kirby (1993). Solid State Chemistry Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Dordrecht: Springer Netherlands. ISBN 978-94-011-1476-9. https://books.google.com/books?id=N-QRBwAAQBAJ&pg=PA71
Wold & Dwight 1993, p. 82. - Wold, Aaron; Dwight, Kirby (1993). Solid State Chemistry Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Dordrecht: Springer Netherlands. ISBN 978-94-011-1476-9. https://books.google.com/books?id=N-QRBwAAQBAJ&pg=PA71
Wold & Dwight 1993, p. 82. - Wold, Aaron; Dwight, Kirby (1993). Solid State Chemistry Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Dordrecht: Springer Netherlands. ISBN 978-94-011-1476-9. https://books.google.com/books?id=N-QRBwAAQBAJ&pg=PA71
Wenk, Hans-Rudolf; Bulakh, Andrei (2003). Minerals: their constitution and origin (Reprinted with corrections. ed.). New York: Cambridge University Press. p. 351. ISBN 978-0-521-52958-7. Archived from the original on 2017-12-03. 978-0-521-52958-7
Zumdahl 1989, p. 133–140. - Zumdahl, Steven S. (1989). Chemistry (2nd ed.). Lexington, Mass.: D.C. Heath. ISBN 978-0-669-16708-5. https://archive.org/details/experimentalchem0000hall
Zumdahl 1989, p. 144–145. - Zumdahl, Steven S. (1989). Chemistry (2nd ed.). Lexington, Mass.: D.C. Heath. ISBN 978-0-669-16708-5. https://archive.org/details/experimentalchem0000hall
Zumdahl 1989, p. 133–140. - Zumdahl, Steven S. (1989). Chemistry (2nd ed.). Lexington, Mass.: D.C. Heath. ISBN 978-0-669-16708-5. https://archive.org/details/experimentalchem0000hall
Brown 2009, p. 417. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
Wold & Dwight 1993, p. 79. - Wold, Aaron; Dwight, Kirby (1993). Solid State Chemistry Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Dordrecht: Springer Netherlands. ISBN 978-94-011-1476-9. https://books.google.com/books?id=N-QRBwAAQBAJ&pg=PA71
Wold & Dwight 1993, pp. 79–81. - Wold, Aaron; Dwight, Kirby (1993). Solid State Chemistry Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Dordrecht: Springer Netherlands. ISBN 978-94-011-1476-9. https://books.google.com/books?id=N-QRBwAAQBAJ&pg=PA71
Wold & Dwight 1993, p. 71. - Wold, Aaron; Dwight, Kirby (1993). Solid State Chemistry Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Dordrecht: Springer Netherlands. ISBN 978-94-011-1476-9. https://books.google.com/books?id=N-QRBwAAQBAJ&pg=PA71
Wold & Dwight 1993, p. 71. - Wold, Aaron; Dwight, Kirby (1993). Solid State Chemistry Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Dordrecht: Springer Netherlands. ISBN 978-94-011-1476-9. https://books.google.com/books?id=N-QRBwAAQBAJ&pg=PA71
Zumdahl 1989, p. 312–313. - Zumdahl, Steven S. (1989). Chemistry (2nd ed.). Lexington, Mass.: D.C. Heath. ISBN 978-0-669-16708-5. https://archive.org/details/experimentalchem0000hall
Barrow 1988, p. 161–162. - Barrow, Gordon M. (1988). Physical chemistry (5th ed.). New York: McGraw-Hill. ISBN 978-0-07-003905-6. https://archive.org/details/physicalchemistr00gord_0
Pauling 1960, p. 6. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Kittel 2005, p. 61. - Kittel, Charles (2005). Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-41526-8.
Pauling 1960, p. 507. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Ashcroft & Mermin 1977, p. 379. - Ashcroft, Neil W.; Mermin, N. David (1977). Solid state physics (27th repr. ed.). New York: Holt, Rinehart and Winston. ISBN 978-0-03-083993-1. https://archive.org/details/solidstatephysic00ashc
Pauling 1960, p. 507. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Pauling 1960, p. 65. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Hannay, N. Bruce; Smyth, Charles P. (February 1946). "The Dipole Moment of Hydrogen Fluoride and the Ionic Character of Bonds". Journal of the American Chemical Society. 68 (2): 171–173. doi:10.1021/ja01206a003. /wiki/Doi_(identifier)
Pauling, Linus (1948). "The modern theory of valency". Journal of the Chemical Society (Resumed). 17: 1461–1467. doi:10.1039/JR9480001461. PMID 18893624. Archived from the original on 2021-12-07. Retrieved 2021-12-01. https://web.archive.org/web/20211207153730/https://authors.library.caltech.edu/59671/
Pauling 1960, p. 65. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Lalena, John. N.; Cleary, David. A. (2010). Principles of inorganic materials design (2nd ed.). Hoboken, N.J: John Wiley. ISBN 978-0-470-56753-1. 978-0-470-56753-1
Pearson, Ralph G. (November 1963). "Hard and Soft Acids and Bases". Journal of the American Chemical Society. 85 (22): 3533–3539. doi:10.1021/ja00905a001. /wiki/Doi_(identifier)
Pearson, Ralph G. (October 1968). "Hard and soft acids and bases, HSAB, part II: Underlying theories". Journal of Chemical Education. 45 (10): 643. Bibcode:1968JChEd..45..643P. doi:10.1021/ed045p643. /wiki/Bibcode_(identifier)
Barrow 1988, p. 676. - Barrow, Gordon M. (1988). Physical chemistry (5th ed.). New York: McGraw-Hill. ISBN 978-0-07-003905-6. https://archive.org/details/physicalchemistr00gord_0
Hendry, Robin Findlay (2008). "Two Conceptions of the Chemical Bond". Philosophy of Science. 75 (5): 909–920. doi:10.1086/594534. S2CID 120135228. /wiki/Doi_(identifier)
Seifert, Vanessa (27 November 2023). "Do bond classifications help or hinder chemistry?". chemistryworld.com. Retrieved 22 January 2024. https://www.chemistryworld.com/opinion/do-bond-classifications-help-or-hinder-chemistry/4018431.article
Pauling 1960, p. 507. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Kittel 2005, p. 64. - Kittel, Charles (2005). Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-41526-8.
Pauling 1960, p. 509. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Carter, Robert (2016). "Lattice Energy" (PDF). CH370 Lecture Material. Archived (PDF) from the original on 2015-05-13. Retrieved 2016-01-19. http://alpha.chem.umb.edu/chemistry/ch370/CH370_Lectures/Lecture%20Documents/Ch07_2_LatticeEnergy.pdf
Ashcroft & Mermin 1977, p. 383. - Ashcroft, Neil W.; Mermin, N. David (1977). Solid state physics (27th repr. ed.). New York: Holt, Rinehart and Winston. ISBN 978-0-03-083993-1. https://archive.org/details/solidstatephysic00ashc
Zumdahl 1989, p. 444–445. - Zumdahl, Steven S. (1989). Chemistry (2nd ed.). Lexington, Mass.: D.C. Heath. ISBN 978-0-669-16708-5. https://archive.org/details/experimentalchem0000hall
Moore, Lesley E. Smart; Elaine A. (2005). Solid state chemistry: an introduction (3. ed.). Boca Raton, Fla. [u.a.]: Taylor & Francis, CRC. p. 44. ISBN 978-0-7487-7516-3.{{cite book}}: CS1 maint: multiple names: authors list (link) 978-0-7487-7516-3
Ashcroft & Mermin 1977, pp. 382–387. - Ashcroft, Neil W.; Mermin, N. David (1977). Solid state physics (27th repr. ed.). New York: Holt, Rinehart and Winston. ISBN 978-0-03-083993-1. https://archive.org/details/solidstatephysic00ashc
Moore, Lesley E. Smart; Elaine A. (2005). Solid state chemistry: an introduction (3. ed.). Boca Raton, Fla. [u.a.]: Taylor & Francis, CRC. p. 44. ISBN 978-0-7487-7516-3.{{cite book}}: CS1 maint: multiple names: authors list (link) 978-0-7487-7516-3
Ashcroft & Mermin 1977, p. 383. - Ashcroft, Neil W.; Mermin, N. David (1977). Solid state physics (27th repr. ed.). New York: Holt, Rinehart and Winston. ISBN 978-0-03-083993-1. https://archive.org/details/solidstatephysic00ashc
Kittel 2005, p. 65. - Kittel, Charles (2005). Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-41526-8.
This structure type has a variable lattice parameter c/a ratio, and the exact Madelung constant depends on this.
Zemann, J. (1 January 1958). "Berechnung von Madelung'schen Zahlen für den NiAs-Typ". Acta Crystallographica. 11 (1): 55–56. Bibcode:1958AcCry..11...55Z. doi:10.1107/S0365110X5800013X. https://doi.org/10.1107%2FS0365110X5800013X
Ashcroft & Mermin 1977, p. 386. - Ashcroft, Neil W.; Mermin, N. David (1977). Solid state physics (27th repr. ed.). New York: Holt, Rinehart and Winston. ISBN 978-0-03-083993-1. https://archive.org/details/solidstatephysic00ashc
Kittel 2005, p. 65. - Kittel, Charles (2005). Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-41526-8.
Sherman, Jack (August 1932). "Crystal Energies of Ionic Compounds and Thermochemical Applications". Chemical Reviews. 11 (1): 93–170. doi:10.1021/cr60038a002. /wiki/Doi_(identifier)
Dienes, Richard J. Borg, G.J. (1992). The physical chemistry of solids. Boston: Academic Press. p. 123. ISBN 978-0-12-118420-9.{{cite book}}: CS1 maint: multiple names: authors list (link) 978-0-12-118420-9
Brackett, Thomas E.; Brackett, Elizabeth B. (1965). "The Lattice Energies of the Alkaline Earth Halides". Journal of Physical Chemistry. 69 (10): 3611–3614. doi:10.1021/j100894a062. /wiki/Doi_(identifier)
Dienes, Richard J. Borg, G.J. (1992). The physical chemistry of solids. Boston: Academic Press. p. 123. ISBN 978-0-12-118420-9.{{cite book}}: CS1 maint: multiple names: authors list (link) 978-0-12-118420-9
This structure has been referred to in references as yttrium(III) chloride and chromium(III) chloride, but both are now known as the RhBr3 structure type. /wiki/Yttrium(III)_chloride
"YCl3 – Yttrium trichloride". ChemTube3D. University of Liverpool. 2008. Archived from the original on 27 January 2016. Retrieved 19 January 2016. http://www.chemtube3d.com/solidstate/_YCl3(final).htm
Ellis, Arthur B. []; et al. (1995). Teaching general chemistry: a materials science companion (3. print ed.). Washington: American Chemical Society. p. 121. ISBN 978-0-8412-2725-5. 978-0-8412-2725-5
Hoppe, R. (January 1966). "Madelung Constants". Angewandte Chemie International Edition in English. 5 (1): 95–106. doi:10.1002/anie.196600951. /wiki/Doi_(identifier)
The reference lists this structure as MoCl3, which is now known as the RhBr3 structure. /wiki/Molybdenum(III)_chloride
Hoppe, R. (January 1966). "Madelung Constants". Angewandte Chemie International Edition in English. 5 (1): 95–106. doi:10.1002/anie.196600951. /wiki/Doi_(identifier)
The reference lists this structure as FeCl3, which is now known as the BiI3 structure type. /wiki/Iron(III)_chloride
Dienes, Richard J. Borg, G.J. (1992). The physical chemistry of solids. Boston: Academic Press. p. 123. ISBN 978-0-12-118420-9.{{cite book}}: CS1 maint: multiple names: authors list (link) 978-0-12-118420-9
This structure type can accommodate any charges on A and B that add up to six. When both are three the charge structure is equivalent to that of corrundum.[46] The structure also has a variable lattice parameter c/a ratio, and the exact Madelung constant depends on this.
However, in some cases such as MgAl2O4 the larger cation occupies the smaller tetrahedral site.[47] /wiki/Spinel
Verwey, E. J. W. (1947). "Physical Properties and Cation Arrangement of Oxides with Spinel Structures I. Cation Arrangement in Spinels". Journal of Chemical Physics. 15 (4): 174–180. Bibcode:1947JChPh..15..174V. doi:10.1063/1.1746464. /wiki/Bibcode_(identifier)
Verwey, E. J. W.; de Boer, F.; van Santen, J. H. (1948). "Cation Arrangement in Spinels". The Journal of Chemical Physics. 16 (12): 1091. Bibcode:1948JChPh..16.1091V. doi:10.1063/1.1746736. https://doi.org/10.1063%2F1.1746736
Thompson, P.; Grimes, N. W. (27 September 2006). "Madelung calculations for the spinel structure". Philosophical Magazine. Vol. 36, no. 3. pp. 501–505. Bibcode:1977PMag...36..501T. doi:10.1080/14786437708239734. /wiki/Bibcode_(identifier)
Alberti, A.; Vezzalini, G. (1978). "Madelung energies and cation distributions in olivine-type structures". Zeitschrift für Kristallographie – Crystalline Materials. 147 (1–4): 167–176. Bibcode:1978ZK....147..167A. doi:10.1524/zkri.1978.147.14.167. hdl:11380/738457. S2CID 101158673. /wiki/Bibcode_(identifier)
Ellis, Arthur B. []; et al. (1995). Teaching general chemistry: a materials science companion (3. print ed.). Washington: American Chemical Society. p. 121. ISBN 978-0-8412-2725-5. 978-0-8412-2725-5
Ashcroft & Mermin 1977, p. 384. - Ashcroft, Neil W.; Mermin, N. David (1977). Solid state physics (27th repr. ed.). New York: Holt, Rinehart and Winston. ISBN 978-0-03-083993-1. https://archive.org/details/solidstatephysic00ashc
Kittel 2005, p. 65. - Kittel, Charles (2005). Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-41526-8.
Souquet, J (October 1981). "Electrochemical properties of ionically conductive glasses". Solid State Ionics. 5: 77–82. doi:10.1016/0167-2738(81)90198-3. /wiki/Doi_(identifier)
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Prakash, Satya (1945). Advanced inorganic chemistry. New Delhi: S. Chand & Company Ltd. p. 554. ISBN 978-81-219-0263-2. {{cite book}}: ISBN / Date incompatibility (help) 978-81-219-0263-2
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Prakash, Satya (1945). Advanced inorganic chemistry. New Delhi: S. Chand & Company Ltd. p. 554. ISBN 978-81-219-0263-2. {{cite book}}: ISBN / Date incompatibility (help) 978-81-219-0263-2
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Kittel 2005, p. 376. - Kittel, Charles (2005). Introduction to Solid State Physics (8th ed.). Hoboken, NJ: John Wiley & Sons. ISBN 978-0-471-41526-8.
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
Schmalzried, Hermann (1965). "Point defects in ternary ionic crystals". Progress in Solid State Chemistry. 2: 265–303. doi:10.1016/0079-6786(65)90009-9. /wiki/Doi_(identifier)
"Periodic Trends and Oxides". Archived from the original on 2015-12-29. Retrieved 2015-11-10. http://www.wou.edu/las/physci/ch412/oxides.html
Whitten, Kenneth W.; Galley, Kenneth D.; Davis, Raymond E. (1992). General Chemistry (4th ed.). Saunders. p. 128. ISBN 978-0-03-072373-5. 978-0-03-072373-5
Davidson, David (November 1955). "Amphoteric molecules, ions and salts". Journal of Chemical Education. 32 (11): 550. Bibcode:1955JChEd..32..550D. doi:10.1021/ed032p550. /wiki/Bibcode_(identifier)
Weller, Mark; Overton, Tina; Rourke, Jonathan; Armstrong, Fraser (2014). Inorganic chemistry (Sixth ed.). Oxford: Oxford University Press. pp. 129–130. ISBN 978-0-19-964182-6. 978-0-19-964182-6
McQuarrie & Rock 1991, p. 503. - McQuarrie, Donald A.; Rock, Peter A. (1991). General chemistry (3rd ed.). New York: W.H. Freeman and Co. ISBN 978-0-7167-2169-7.
Pauling, Linus (1928-04-01). "The Influence of Relative Ionic Sizes on the Properties of Ionic Compounds". Journal of the American Chemical Society. 50 (4): 1036–1045. doi:10.1021/ja01391a014. ISSN 0002-7863. /wiki/Doi_(identifier)
Tosi, M. P. (2002). Gaune-Escard, Marcelle (ed.). Molten Salts: From Fundamentals to Applications. Dordrecht: Springer Netherlands. p. 1. ISBN 978-94-010-0458-9. Archived from the original on 2017-12-03. 978-94-010-0458-9
Freemantle 2009, p. 1. - Freemantle, Michael (2009). An introduction to ionic liquids. Cambridge: Royal Society of Chemistry. ISBN 978-1-84755-161-0. https://books.google.com/books?id=kvM2YEftV2cC&pg=PP1
Freemantle 2009, pp. 3–4. - Freemantle, Michael (2009). An introduction to ionic liquids. Cambridge: Royal Society of Chemistry. ISBN 978-1-84755-161-0. https://books.google.com/books?id=kvM2YEftV2cC&pg=PP1
Rebelo, Luis P. N.; Canongia Lopes, José N.; Esperança, José M. S. S.; Filipe, Eduardo (2005-04-01). "On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids". The Journal of Physical Chemistry B. 109 (13): 6040–6043. doi:10.1021/jp050430h. ISSN 1520-6106. PMID 16851662. /wiki/Doi_(identifier)
Rebelo, Luis P. N.; Canongia Lopes, José N.; Esperança, José M. S. S.; Filipe, Eduardo (2005-04-01). "On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids". The Journal of Physical Chemistry B. 109 (13): 6040–6043. doi:10.1021/jp050430h. ISSN 1520-6106. PMID 16851662. /wiki/Doi_(identifier)
Rebelo, Luis P. N.; Canongia Lopes, José N.; Esperança, José M. S. S.; Filipe, Eduardo (2005-04-01). "On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids". The Journal of Physical Chemistry B. 109 (13): 6040–6043. doi:10.1021/jp050430h. ISSN 1520-6106. PMID 16851662. /wiki/Doi_(identifier)
Porterfield, William W. (2013). Inorganic Chemistry a Unified Approach (2nd ed.). New York: Elsevier Science. pp. 63–67. ISBN 978-0-323-13894-9. Archived from the original on 2017-12-03. 978-0-323-13894-9
Johnston, T. L.; Stokes, R. J.; Li, C. H. (December 1959). "The ductile–brittle transition in ionic solids". Philosophical Magazine. Vol. 4, no. 48. pp. 1316–1324. Bibcode:1959PMag....4.1316J. doi:10.1080/14786435908233367. /wiki/Bibcode_(identifier)
Johnston, T. L.; Stokes, R. J.; Li, C. H. (December 1959). "The ductile–brittle transition in ionic solids". Philosophical Magazine. Vol. 4, no. 48. pp. 1316–1324. Bibcode:1959PMag....4.1316J. doi:10.1080/14786435908233367. /wiki/Bibcode_(identifier)
Kelly, A.; Tyson, W. R.; Cottrell, A. H. (1967-03-01). "Ductile and brittle crystals". Philosophical Magazine. Vol. 15, no. 135. pp. 567–586. Bibcode:1967PMag...15..567K. doi:10.1080/14786436708220903. ISSN 0031-8086. /wiki/Bibcode_(identifier)
Stillwell, Charles W. (January 1937). "Crystal chemistry. V. The properties of binary compounds". Journal of Chemical Education. 14 (1): 34. Bibcode:1937JChEd..14...34S. doi:10.1021/ed014p34. /wiki/Bibcode_(identifier)
Brown 2009, pp. 89–91. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
Brown 2009, pp. 413–415. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
Brown 2009, p. 422. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
Brown 2009, p. 422. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
"Electrical Conductivity of Ionic Compound". 2011-05-22. Archived from the original on 21 May 2014. Retrieved 2 December 2012. http://cikguwong.blogspot.com/2011/05/chemistry-form-4-chapter-5-electrical.html
Zumdahl 1989, p. 341. - Zumdahl, Steven S. (1989). Chemistry (2nd ed.). Lexington, Mass.: D.C. Heath. ISBN 978-0-669-16708-5. https://archive.org/details/experimentalchem0000hall
Souquet, J (October 1981). "Electrochemical properties of ionically conductive glasses". Solid State Ionics. 5: 77–82. doi:10.1016/0167-2738(81)90198-3. /wiki/Doi_(identifier)
Gao, Wei; Sammes, Nigel M (1999). An Introduction to Electronic and Ionic Materials. World Scientific. p. 261. ISBN 978-981-02-3473-7. Archived from the original on 2017-12-03. 978-981-02-3473-7
Gao, Wei; Sammes, Nigel M (1999). An Introduction to Electronic and Ionic Materials. World Scientific. p. 261. ISBN 978-981-02-3473-7. Archived from the original on 2017-12-03. 978-981-02-3473-7
West, Anthony R. (1991). "Solid electrolytes and mixed ionic?electronic conductors: an applications overview". Journal of Materials Chemistry. 1 (2): 157. doi:10.1039/JM9910100157. /wiki/Doi_(identifier)
Boivin, J. C.; Mairesse, G. (October 1998). "Recent Material Developments in Fast Oxide Ion Conductors". Chemistry of Materials. 10 (10): 2870–2888. doi:10.1021/cm980236q. /wiki/Doi_(identifier)
Pauling 1960, p. 105. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Brown 2009, p. 417. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
Pauling 1960, p. 107. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Pauling 1960, p. 107. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Pauling 1960, p. 107. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Pauling 1960, p. 107. - Pauling, Linus (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry (3rd ed.). Ithaca, N.Y.: Cornell University Press. ISBN 978-0-8014-0333-0. https://archive.org/details/natureofchemical00paul
Wenk & Bulakh 2004, p. 774. - Wenk, Hans-Rudolph; Bulakh, Andrei (2004). Minerals: Their Constitution and Origin (1st ed.). New York: Cambridge University Press. ISBN 978-1-107-39390-5. https://books.google.com/books?id=vUVdAAAAQBAJ&pg=PT774
Kurlansky, Mark (2003). Salt: a world history (1st ed.). London: Vintage. ISBN 978-0-09-928199-3. 978-0-09-928199-3
Lower, Simon (2014). "Naming Chemical Substances". Chem1 General Chemistry Virtual Textbook. Archived from the original on 16 January 2016. Retrieved 14 January 2016. http://www.chem1.com/acad/webtext/intro/int-5.html
Atkins & de Paula 2006, pp. 150–157. - Atkins, Peter; de Paula, Julio (2006). Atkins' physical chemistry (8th ed.). Oxford: Oxford University Press. ISBN 978-0-19-870072-2.
Atkins & de Paula 2006, pp. 761–770. - Atkins, Peter; de Paula, Julio (2006). Atkins' physical chemistry (8th ed.). Oxford: Oxford University Press. ISBN 978-0-19-870072-2.
Atkins & de Paula 2006, pp. 163–169. - Atkins, Peter; de Paula, Julio (2006). Atkins' physical chemistry (8th ed.). Oxford: Oxford University Press. ISBN 978-0-19-870072-2.
Reeves TG (1986). "Water fluoridation: a manual for engineers and technicians" (PDF). Centers for Disease Control. Archived from the original (PDF) on 2017-02-08. Retrieved 2016-01-18. https://web.archive.org/web/20170208052648/http://www.cdph.ca.gov/certlic/drinkingwater/Documents/Fluoridation/CDC-FluoridationManual-1986.pdf
Satake, M; Mido, Y (1995). Chemistry of Colour. Discovery Publishing House. p. 230. ISBN 978-81-7141-276-1. Archived from the original on 2017-12-03. 978-81-7141-276-1
Russell 2009, p. 14. - Russell, Michael S. (2009). The chemistry of fireworks (2nd ed.). Cambridge, UK: RSC Pub. ISBN 978-0-85404-127-5.
Russell 2009, p. 82. - Russell, Michael S. (2009). The chemistry of fireworks (2nd ed.). Cambridge, UK: RSC Pub. ISBN 978-0-85404-127-5.
Russell 2009, pp. 108–117. - Russell, Michael S. (2009). The chemistry of fireworks (2nd ed.). Cambridge, UK: RSC Pub. ISBN 978-0-85404-127-5.
Russell 2009, pp. 129–133. - Russell, Michael S. (2009). The chemistry of fireworks (2nd ed.). Cambridge, UK: RSC Pub. ISBN 978-0-85404-127-5.
Xu, Ruren; Pang, Wenqin; Huo, Qisheng (2011). Modern inorganic synthetic chemistry. Amsterdam: Elsevier. p. 22. ISBN 978-0-444-53599-3. 978-0-444-53599-3
Zumdahl & Zumdahl 2015, pp. 822. - Zumdahl, Steven; Zumdahl, Susan (2015). Chemistry: An Atoms First Approach. Cengage Learning. ISBN 978-1-305-68804-9.
Zumdahl & Zumdahl 2015, pp. 823. - Zumdahl, Steven; Zumdahl, Susan (2015). Chemistry: An Atoms First Approach. Cengage Learning. ISBN 978-1-305-68804-9.
Gupta, Chiranjib Kumar (2003). Chemical metallurgy principles and practice. Weinheim: Wiley-VCH. pp. 359–365. ISBN 978-3-527-60525-5. 978-3-527-60525-5
IUPAC 2005, p. 68. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 70. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 69. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
Kotz, John C.; Treichel, Paul M; Weaver, Gabriela C. (2006). Chemistry and Chemical Reactivity (Sixth ed.). Belmont, CA: Thomson Brooks/Cole. p. 111. ISBN 978-0-534-99766-3. 978-0-534-99766-3
Brown 2009, pp. 36–37. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
IUPAC 2005, pp. 75–76. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 75. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
Gibbons, Cyril S.; Reinsborough, Vincent C.; Whitla, W. Alexander (January 1975). "Crystal Structures of K2MgCl4 and Cs2MgCl4". Canadian Journal of Chemistry. 53 (1): 114–118. doi:10.1139/v75-015. /wiki/Doi_(identifier)
IUPAC 2005, p. 76. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, pp. 76–77. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 77. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 77. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 77. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 77. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, p. 77. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
IUPAC 2005, pp. 77–78. - International Union of Pure and Applied Chemistry, Division of Chemical Nomenclature (2005). Neil G. Connelly (ed.). Nomenclature of inorganic chemistry: IUPAC recommendations 2005 (New ed.). Cambridge: RSC Publ. ISBN 978-0-85404-438-2. Archived from the original on 2016-02-03. Retrieved 2023-02-05. https://web.archive.org/web/20160203110828/http://www.iupac.org/nc/home/publications/iupac-books/books-db/book-details.html?tx_wfqbe_pi1%5Bbookid%5D=5
Fernelius, W. Conard (November 1982). "Numbers in chemical names". Journal of Chemical Education. 59 (11): 964. Bibcode:1982JChEd..59..964F. doi:10.1021/ed059p964. /wiki/Bibcode_(identifier)
Brown 2009, p. 38. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
Brown 2009, p. 38. - Brown, Theodore L.; LeMay, H. Eugene Jr; Bursten, Bruce E.; Lanford, Steven; Sagatys, Dalius; Duffy, Neil (2009). Chemistry: the central science: a broad perspective (2nd ed.). Frenchs Forest, N.S.W.: Pearson Australia. ISBN 978-1-4425-1147-7.
Voet, D. & Voet, J. G. (2005). Biochemistry (3rd ed.). Hoboken, New Jersey: John Wiley & Sons Inc. p. 68. ISBN 9780471193500. Archived from the original on 2007-09-11. 9780471193500