Quarteroni, A., Saleri, F., & Gervasio, P. (2006). Scientific computing with MATLAB and Octave. Berlin: Springer.
Gander, W., & Hrebicek, J. (Eds.). (2011). Solving problems in scientific computing using Maple and Matlab. Springer Science & Business Media. /wiki/Springer_Science_%26_Business_Media
Barnes, B., & Fulford, G. R. (2011). Mathematical modelling with case studies: a differential equations approach using Maple and MATLAB. Chapman and Hall/CRC.
Ramel, David (2018-05-08). "Open Source, Cross-Platform ML.NET Simplifies Machine Learning". Visual Studio Magazine. Retrieved 2018-05-10. https://visualstudiomagazine.com/articles/2018/05/08/ml-net-framework.aspx
Kareem Anderson (2017-05-09). "Microsoft debuts ML.NET cross-platform machine learning framework". On MSFT. Retrieved 2018-05-10. https://www.onmsft.com/news/microsoft-debuts-ml-net-cross-platform-machine-learning-framework
Bunks, C., Chancelier, J. P., Delebecque, F., Goursat, M., Nikoukhah, R., & Steer, S. (2012). Engineering and scientific computing with Scilab. Springer Science & Business Media. /wiki/Springer_Science_%26_Business_Media
Thanki, R. M., & Kothari, A. M. (2019). Digital image processing using SCILAB. Springer International Publishing.
Maeder, R. E. (1991). Programming in mathematica. Addison-Wesley Longman Publishing Co., Inc.
Stephen Wolfram. (1999). The MATHEMATICA® book, version 4. Cambridge University Press. /wiki/Cambridge_University_Press
Shaw, W. T., & Tigg, J. (1993). Applied Mathematica: getting started, getting it done. Addison-Wesley Longman Publishing Co., Inc.
Marasco, A., & Romano, A. (2001). Scientific Computing with Mathematica: Mathematical Problems for Ordinary Differential Equations; with a CD-ROM. Springer Science & Business Media. /wiki/Springer_Science_%26_Business_Media
Zimmermann, P., Casamayou, A., Cohen, N., Connan, G., Dumont, T., Fousse, L., ... & Bray, E. (2018). Computational Mathematics with SageMath. SIAM.
Wagner III, W. E. (2019). Using IBM® SPSS® statistics for research methods and social science statistics. Sage Publications.
Pollock III, P. H., & Edwards, B. C. (2019). An IBM® SPSS® Companion to Political Analysis. Cq Press.
Babbie, E., Wagner III, W. E., & Zaino, J. (2018). Adventures in social research: Data analysis using IBM SPSS statistics. Sage Publications.
Aldrich, J. O. (2018). Using IBM® SPSS® Statistics: An interactive hands-on approach. Sage Publications.
Stehlik-Barry, K., & Babinec, A. J. (2017). Data Analysis with IBM SPSS Statistics. Packt Publishing Ltd.
Ch Scientific Numerical Computing http://www.softintegration.com/docs/ch/numeric/
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical computing. SIAM Review, 59(1), 65-98.
Bezanson, J., Karpinski, S., Shah, V. B., & Edelman, A. (2012). Julia: A fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145.
Gumley, L. E. (2001). Practical IDL programming. Elsevier.
Christiansen, T., Wall, L., & Orwant, J. (2012). Programming Perl: Unmatched power for text processing and scripting. " O'Reilly Media, Inc.".
Srinivasan, S. (1997). Advanced perl programming. " O'Reilly Media, Inc.".
Van Rossum, G. (2007, June). Python Programming Language. In USENIX annual technical conference (Vol. 41, p. 36).
Sanner, M. F. (1999). Python: a programming language for software integration and development. J Mol Graph Model, 17(1), 57-61.
Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scientific tools for Python.
Bressert, E. (2012). SciPy and NumPy: an overview for developers. " O'Reilly Media, Inc.".
Blanco-Silva, F. J. (2013). Learning SciPy for numerical and scientific computing. Packt Publishing Ltd.
Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of computational and graphical statistics, 5(3), 299-314.
Khattree, R., & Naik, D. N. (2018). Applied multivariate statistics with SAS software. SAS Institute Inc.
SAS/IML https://www.sas.com/en_us/software/iml.html