Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Comparison of deep learning software
Comparison

The following tables compare notable software frameworks, libraries, and computer programs for deep learning applications.

We don't have any images related to Comparison of deep learning software yet.
We don't have any YouTube videos related to Comparison of deep learning software yet.
We don't have any PDF documents related to Comparison of deep learning software yet.
We don't have any Books related to Comparison of deep learning software yet.
We don't have any archived web articles related to Comparison of deep learning software yet.

Deep learning software by name

SoftwareCreatorInitial releaseSoftware license1Open sourcePlatformWritten inInterfaceOpenMP supportOpenCL supportCUDA supportROCm support2Automatic differentiation3Has pretrained modelsRecurrent netsConvolutional netsRBM/DBNsParallel execution(multi node)Actively developed
BigDLJason Dai (Intel)2016Apache 2.0YesApache SparkScalaScala, PythonNoNoYesYesYesYes
CaffeBerkeley Vision and Learning Center2013BSDYesLinux, macOS, Windows4C++Python, MATLAB, C++YesUnder development5YesNoYesYes6YesYesNo?No7
ChainerPreferred Networks2015BSDYesLinux, macOSPythonPythonNoNoYesNoYesYesYesYesNoYesNo8
Deeplearning4jSkymind engineering team; Deeplearning4j community; originally Adam Gibson2014Apache 2.0YesLinux, macOS, Windows, Android (Cross-platform)C++, JavaJava, Scala, Clojure, Python (Keras), KotlinYesNo9Yes1011NoComputational GraphYes12YesYesYesYes13Yes
DlibDavis King2002Boost Software LicenseYesCross-platformC++C++, PythonYesNoYesNoYesYesNoYesYesYesYes
FluxMike Innes2017MIT licenseYesLinux, MacOS, Windows (Cross-platform)JuliaJuliaYesNoYesYes14YesYesNoYesYes
Intel Data Analytics Acceleration LibraryIntel2015Apache License 2.0YesLinux, macOS, Windows on Intel CPU15C++, Python, JavaC++, Python, Java16YesNoNoNoYesNoYesYesYes
Intel Math Kernel Library 2017 17 and laterIntel2017ProprietaryNoLinux, macOS, Windows on Intel CPU18C/C++, DPC++, FortranC19Yes20NoNoNoYesNoYes21Yes22NoYes
Google JAXGoogle2018Apache License 2.0YesLinux, macOS, WindowsPythonPythonOnly on LinuxNoYesNoYesYes
KerasFrançois Chollet2015MIT licenseYesLinux, macOS, WindowsPythonPython, ROnly if using Theano as backendCan use Theano, Tensorflow or PlaidML as backendsYesNoYesYes23YesYesNo24Yes25Yes
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox)MathWorks1992ProprietaryNoLinux, macOS, WindowsC, C++, Java, MATLABMATLABNoNoTrain with Parallel Computing Toolbox and generate CUDA code with GPU Coder26NoYes27Yes2829Yes30Yes31YesWith Parallel Computing Toolbox32Yes
Microsoft Cognitive Toolkit (CNTK)Microsoft Research2016MIT license33YesWindows, Linux34 (macOS via Docker on roadmap)C++Python (Keras), C++, Command line,35 BrainScript36 (.NET on roadmap37)Yes38NoYesNoYesYes39Yes40Yes41No42Yes43No44
ML.NETMicrosoft2018MIT licenseYesWindows, Linux, macOSC#, C++C#, F#Yes
Apache MXNetApache Software Foundation2015Apache 2.0YesLinux, macOS, Windows,4546 AWS, Android,47 iOS, JavaScript48Small C++ core libraryC++, Python, Julia, MATLAB, JavaScript, Go, R, Scala, Perl, ClojureYesNoYesNoYes49Yes50YesYesYesYes51No
Neural DesignerArtelnics2014ProprietaryNoLinux, macOS, WindowsC++Graphical user interfaceYesNoYesNoAnalytical differentiationNoNoNoNoYesYes
OpenNNArtelnics2003GNU LGPLYesCross-platformC++C++YesNoYesNo??NoNoNo?Yes
PlaidMLVertex.AI, Intel2017Apache 2.0YesLinux, macOS, WindowsPython, C++, OpenCLPython, C++?Some OpenCL ICDs are not recognizedNoNoYesYesYesYesYesYes
PyTorchAdam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan (Facebook)2016BSDYesLinux, macOS, Windows, Android52Python, C, C++, CUDAPython, C++, Julia, R53YesVia separately maintained package545556YesYesYesYesYesYesYes57YesYes
Apache SINGAApache Software Foundation2015Apache 2.0YesLinux, macOS, WindowsC++Python, C++, JavaNoSupported in V1.0YesNo?YesYesYesYesYesYes
TensorFlowGoogle Brain2015Apache 2.0YesLinux, macOS, Windows,5859 AndroidC++, Python, CUDAPython (Keras), C/C++, Java, Go, JavaScript, R,60 Julia, SwiftNoOn roadmap61 but already with SYCL62 supportYesYesYes63Yes64YesYesYesYesYes
TheanoUniversité de Montréal2007BSDYesCross-platformPythonPython (Keras)YesUnder development65YesNoYes6667Through Lasagne's model zoo68YesYesYesYes69No
TorchRonan Collobert, Koray Kavukcuoglu, Clement Farabet2002BSDYesLinux, macOS, Windows,70 Android,71 iOSC, LuaLua, LuaJIT,72 C, utility library for C++/OpenCL73YesThird party implementations7475Yes7677NoThrough Twitter's Autograd78Yes79YesYesYesYes80No
Wolfram Mathematica 1081 and laterWolfram Research2014ProprietaryNoWindows, macOS, Linux, Cloud computingC++, Wolfram Language, CUDAWolfram LanguageYesNoYesNoYesYes82YesYesYesYes83Yes
SoftwareCreatorInitial releaseSoftware license84Open sourcePlatformWritten inInterfaceOpenMP supportOpenCL supportCUDA supportROCm support85Automatic differentiation86Has pretrained modelsRecurrent netsConvolutional netsRBM/DBNsParallel execution(multi node)Actively developed

Comparison of machine learning model compatibility

Format nameDesign goalCompatible with other formatsSelf-contained DNN ModelPre-processing and Post-processingRun-time configuration for tuning & calibrationDNN model interconnectCommon platform
TensorFlow, Keras, Caffe, TorchAlgorithm trainingNoNo / Separate files in most formatsNoNoNoYes
ONNXAlgorithm trainingYesNo / Separate files in most formatsNoNoNoYes

See also

References

  1. Licenses here are a summary, and are not taken to be complete statements of the licenses. Some libraries may use other libraries internally under different licenses

  2. "Deep Learning — ROCm 4.5.0 documentation". Archived from the original on 2022-12-05. Retrieved 2022-09-27. https://web.archive.org/web/20221205102733/https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html

  3. Atilim Gunes Baydin; Barak A. Pearlmutter; Alexey Andreyevich Radul; Jeffrey Mark Siskind (20 February 2015). "Automatic differentiation in machine learning: a survey". arXiv:1502.05767 [cs.LG]. /wiki/ArXiv_(identifier)

  4. "Microsoft/caffe". GitHub. 30 October 2021. https://github.com/Microsoft/caffe

  5. "Caffe: a fast open framework for deep learning". July 19, 2019 – via GitHub. https://github.com/BVLC/caffe

  6. "Caffe | Model Zoo". caffe.berkeleyvision.org. http://caffe.berkeleyvision.org/model_zoo.html

  7. GitHub - BVLC/caffe: Caffe: a fast open framework for deep learning., Berkeley Vision and Learning Center, 2019-09-25, retrieved 2019-09-25 https://github.com/BVLC/caffe

  8. Preferred Networks Migrates its Deep Learning Research Platform to PyTorch, 2019-12-05, retrieved 2019-12-27 https://preferred.jp/en/news/pr20191205/

  9. "Support for Open CL · Issue #27 · deeplearning4j/nd4j". GitHub. https://github.com/deeplearning4j/nd4j/issues/27

  10. "N-Dimensional Scientific Computing for Java". Archived from the original on 2016-10-16. Retrieved 2016-02-05. https://web.archive.org/web/20161016094035/http://nd4j.org/gpu_native_backends.html

  11. "Comparing Top Deep Learning Frameworks". Deeplearning4j. Archived from the original on 2017-11-07. Retrieved 2017-10-31. https://web.archive.org/web/20171107011631/https://deeplearning4j.org/compare-dl4j-tensorflow-pytorch

  12. Chris Nicholson; Adam Gibson. "Deeplearning4j Models". Archived from the original on 2017-02-11. Retrieved 2016-03-02. https://web.archive.org/web/20170211020819/https://deeplearning4j.org/model-zoo

  13. Deeplearning4j. "Deeplearning4j on Spark". Deeplearning4j. Archived from the original on 2017-07-13. Retrieved 2016-09-01.{{cite web}}: CS1 maint: numeric names: authors list (link) https://web.archive.org/web/20170713012632/https://deeplearning4j.org/spark

  14. "Metalhead". FluxML. 29 October 2021. https://github.com/FluxML/Metalhead.jl

  15. "Intel® Data Analytics Acceleration Library (Intel® DAAL)". software.intel.com. November 20, 2018. https://software.intel.com/en-us/intel-daal

  16. "Intel® Data Analytics Acceleration Library (Intel® DAAL)". software.intel.com. November 20, 2018. https://software.intel.com/en-us/intel-daal

  17. "Intel® Math Kernel Library Release Notes and New Features". Intel. https://www.intel.com/content/www/us/en/developer/articles/release-notes/intel-math-kernel-library-release-notes-and-new-features.html

  18. "Intel® Math Kernel Library (Intel® MKL)". software.intel.com. September 11, 2018. https://software.intel.com/en-us/mkl

  19. "Deep Neural Network Functions". software.intel.com. May 24, 2019. https://software.intel.com/en-us/mkl-developer-reference-c-deep-neural-network-functions

  20. "Using Intel® MKL with Threaded Applications". software.intel.com. June 1, 2017. https://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-using-intel-mkl-with-threaded-applications

  21. "Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast". software.intel.com. March 21, 2019. https://software.intel.com/en-us/articles/intel-xeon-phi-delivers-competitive-performance-for-deep-learning-and-getting-better-fast

  22. "Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast". software.intel.com. March 21, 2019. https://software.intel.com/en-us/articles/intel-xeon-phi-delivers-competitive-performance-for-deep-learning-and-getting-better-fast

  23. "Applications - Keras Documentation". keras.io. https://keras.io/applications/

  24. "Is there RBM in Keras? · Issue #461 · keras-team/keras". GitHub. https://github.com/keras-team/keras/issues/461

  25. "Does Keras support using multiple GPUs? · Issue #2436 · keras-team/keras". GitHub. https://github.com/keras-team/keras/issues/2436

  26. "GPU Coder - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017. https://www.mathworks.com/products/gpu-coder.html

  27. "Automatic Differentiation Background - MATLAB & Simulink". MathWorks. September 3, 2019. Retrieved November 19, 2019. https://www.mathworks.com/help/deeplearning/ug/deep-learning-with-automatic-differentiation-in-matlab.html

  28. "Neural Network Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017. https://www.mathworks.com/products/neural-network.html

  29. "Deep Learning Models - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017. https://www.mathworks.com/solutions/deep-learning/models.html

  30. "Neural Network Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017. https://www.mathworks.com/products/neural-network.html

  31. "Neural Network Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017. https://www.mathworks.com/products/neural-network.html

  32. "Parallel Computing Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017. https://www.mathworks.com/products/parallel-computing.html

  33. "CNTK/LICENSE.md at master · Microsoft/CNTK". GitHub. https://github.com/Microsoft/CNTK/blob/master/LICENSE.md

  34. "Setup CNTK on your machine". GitHub. https://github.com/Microsoft/CNTK/wiki/Setup-CNTK-on-your-machine

  35. "CNTK usage overview". GitHub. https://github.com/Microsoft/CNTK/wiki/CNTK-usage-overview

  36. "BrainScript Network Builder". GitHub. https://github.com/Microsoft/CNTK/wiki/BrainScript-Network-Builder

  37. ".NET Support · Issue #960 · Microsoft/CNTK". GitHub. https://github.com/Microsoft/CNTK/issues/960

  38. "How to train a model using multiple machines? · Issue #59 · Microsoft/CNTK". GitHub. https://github.com/Microsoft/CNTK/issues/59#issuecomment-178104505

  39. "Prebuilt models for image classification · Issue #140 · microsoft/CNTK". GitHub. https://github.com/microsoft/CNTK/issues/140

  40. "CNTK - Computational Network Toolkit". Microsoft Corporation. http://www.cntk.ai/

  41. "CNTK - Computational Network Toolkit". Microsoft Corporation. http://www.cntk.ai/

  42. "Restricted Boltzmann Machine with CNTK #534". GitHub, Inc. 27 May 2016. Retrieved 30 October 2023. https://github.com/Microsoft/CNTK/issues/534

  43. "Multiple GPUs and machines". Microsoft Corporation. https://github.com/Microsoft/CNTK/wiki/Multiple-GPUs-and-machines

  44. "Disclaimer". CNTK TEAM. 6 November 2021. https://github.com/Microsoft/CNTK#disclaimer

  45. "Releases · dmlc/mxnet". Github. https://github.com/dmlc/mxnet/releases

  46. "Installation Guide — mxnet documentation". Readthdocs. https://mxnet.readthedocs.io/en/latest/how_to/build.html#building-on-windows

  47. "MXNet Smart Device". ReadTheDocs. Archived from the original on 2016-09-21. Retrieved 2016-05-19. https://web.archive.org/web/20160921205959/http://mxnet.readthedocs.io/en/latest/how_to/smart_device.html

  48. "MXNet.js". Github. 28 October 2021. https://github.com/dmlc/mxnet.js

  49. "— Redirecting to mxnet.io". mxnet.readthedocs.io. https://mxnet.readthedocs.io/en/latest/

  50. "Model Gallery". GitHub. 29 October 2022. https://github.com/dmlc/mxnet-model-gallery

  51. "Run MXNet on Multiple CPU/GPUs with Data Parallel". GitHub. https://mxnet.readthedocs.io/en/latest/how_to/multi_devices.html

  52. "PyTorch". Dec 17, 2021. https://pytorch.org/mobile/android/

  53. "Falbel D, Luraschi J (2023). torch: Tensors and Neural Networks with 'GPU' Acceleration". torch.mlverse.org. Retrieved 2023-11-28. https://torch.mlverse.org/

  54. "OpenCL build of pytorch: (in-progress, not useable) - hughperkins/pytorch-coriander". July 14, 2019 – via GitHub. https://github.com/hughperkins/pytorch-coriander

  55. "DLPrimitives/OpenCL out of tree backend for pytorch - artyom-beilis/pytorch_dlprim". Jan 21, 2022 – via GitHub. https://github.com/artyom-beilis/pytorch_dlprim

  56. "OpenCL Support · Issue #488 · pytorch/pytorch". GitHub. https://github.com/pytorch/pytorch/issues/488

  57. "Restricted Boltzmann Machines (RBMs) in PyTorch". GitHub. 14 November 2022. https://github.com/GabrielBianconi/pytorch-rbm/blob/master/rbm.py

  58. "Install TensorFlow with pip". https://www.tensorflow.org/install/pip

  59. "TensorFlow 0.12 adds support for Windows". https://developers.googleblog.com/2016/11/tensorflow-0-12-adds-support-for-windows.html

  60. Allaire, J.J.; Kalinowski, T.; Falbel, D.; Eddelbuettel, D.; Yuan, T.; Golding, N. (28 September 2023). "tensorflow: R Interface to 'TensorFlow'". The Comprehensive R Archive Network. Retrieved 30 October 2023. https://cran.r-project.org/web/packages/tensorflow/

  61. "tensorflow/roadmap.md at master". GitHub. January 23, 2017. Retrieved May 21, 2017. https://github.com/tensorflow/tensorflow/blob/master/tensorflow/docs_src/about/roadmap.md

  62. "OpenCL support". GitHub. https://github.com/tensorflow/tensorflow/issues/22

  63. "TensorFlow". TensorFlow. https://www.tensorflow.org/

  64. "Models and examples built with TensorFlow". July 19, 2019 – via GitHub. https://github.com/tensorflow/models

  65. "Using the GPU: Theano 0.8.2 documentation". Archived from the original on 2017-04-01. Retrieved 2016-01-21. https://web.archive.org/web/20170401163303/http://deeplearning.net/software/theano/tutorial/using_gpu.html

  66. "gradient – Symbolic Differentiation — Theano 1.0.0 documentation". deeplearning.net. http://deeplearning.net/software/theano/library/gradient.html

  67. "Automatic vs. Symbolic differentiation". https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ

  68. "Recipes/modelzoo at master · Lasagne/Recipes". GitHub. https://github.com/Lasagne/Recipes/tree/master/modelzoo

  69. "Using multiple GPUs — Theano 1.0.0 documentation". deeplearning.net. http://deeplearning.net/software/theano/tutorial/using_multi_gpu.html

  70. "torch/torch7". July 18, 2019 – via GitHub. https://github.com/torch/torch7

  71. "GitHub - soumith/torch-android: Torch-7 for Android". GitHub. 13 October 2021. https://github.com/soumith/torch-android

  72. "Torch7: A MATLAB-like Environment for Machine Learning" (PDF). http://ronan.collobert.com/pub/matos/2011_torch7_nipsw.pdf

  73. "GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library". GitHub. 18 November 2020. https://github.com/jonathantompson/jtorch

  74. "Cheatsheet". GitHub. https://github.com/torch/torch7/wiki/Cheatsheet#opencl

  75. "cltorch". GitHub. https://github.com/hughperkins/distro-cl

  76. "Torch CUDA backend". GitHub. https://github.com/torch/cutorch

  77. "Torch CUDA backend for nn". GitHub. https://github.com/torch/cunn

  78. "Autograd automatically differentiates native Torch code: twitter/torch-autograd". July 9, 2019 – via GitHub. https://github.com/twitter/torch-autograd

  79. "ModelZoo". GitHub. https://github.com/torch/torch7/wiki/ModelZoo

  80. "torch/torch7". July 18, 2019 – via GitHub. https://github.com/torch/torch7

  81. "Launching Mathematica 10". Wolfram. https://blog.wolfram.com/2014/07/09/launching-mathematica-10-with-700-new-functions-and-a-crazy-amount-of-rd

  82. "Wolfram Neural Net Repository of Neural Network Models". resources.wolframcloud.com. http://resources.wolframcloud.com/NeuralNetRepository

  83. "Parallel Computing—Wolfram Language Documentation". reference.wolfram.com. https://reference.wolfram.com/language/guide/ParallelComputing.html.en

  84. Licenses here are a summary, and are not taken to be complete statements of the licenses. Some libraries may use other libraries internally under different licenses

  85. "Deep Learning — ROCm 4.5.0 documentation". Archived from the original on 2022-12-05. Retrieved 2022-09-27. https://web.archive.org/web/20221205102733/https://rocmdocs.amd.com/en/latest/Deep_learning/Deep-learning.html

  86. Atilim Gunes Baydin; Barak A. Pearlmutter; Alexey Andreyevich Radul; Jeffrey Mark Siskind (20 February 2015). "Automatic differentiation in machine learning: a survey". arXiv:1502.05767 [cs.LG]. /wiki/ArXiv_(identifier)