Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
DNA and RNA codon tables
List of standard rules to translate DNA encoded information into proteins

A codon table translates the genetic code into amino acid sequences during protein synthesis, with the standard represented as an RNA codon table since mRNA directs protein assembly by ribosomes. There are 64 codons, most coding for amino acids, but three—stop codons—signal translation termination. The start codon AUG codes for methionine and initiates translation, though GUG and UUG can rarely serve this role. Codon tables vary depending on origin, such as mitochondrial or nuclear DNA. Reorganizing the classical codon table by the second codon position better reflects amino acid hydrophobicity patterns, suggesting evolutionary optimization in ribosome reading. Both standard and inverse tables assist in translating between nucleotide triplets and amino acids, with guidance from IUPAC nucleic acid notation.

Related Image Collections Add Image
We don't have any YouTube videos related to DNA and RNA codon tables yet.
We don't have any PDF documents related to DNA and RNA codon tables yet.
We don't have any Books related to DNA and RNA codon tables yet.
We don't have any archived web articles related to DNA and RNA codon tables yet.

Translation table 1

Standard RNA codon table

Amino-acid biochemical propertiesNonpolar (np)Polar (p)Basic (b)Acidic (a)Termination: stop codon *Initiation: possible start codon ⇒
Standard genetic code1819
1stbase2nd base3rdbase
UCAG
UUUU(Phe/F) Phenylalanine (np)UCU(Ser/S) Serine (p)UAU(Tyr/Y) Tyrosine (p)UGU(Cys/C) Cysteine (p)U
UUCUCCUACUGCC
UUA(Leu/L) Leucine (np)UCAUAAStop (Ochre) *20UGAStop (Opal) *21A
UUG ⇒UCGUAGStop (Amber) *22UGG(Trp/W) Tryptophan (np)G
CCUUCCU(Pro/P) Proline (np)CAU(His/H) Histidine (b)CGU(Arg/R) Arginine (b)U
CUCCCCCACCGCC
CUACCACAA(Gln/Q) Glutamine (p)CGAA
CUGCCGCAGCGGG
AAUU(Ile/I) Isoleucine (np)ACU(Thr/T) Threonine (p)AAU(Asn/N) Asparagine (p)AGU(Ser/S) Serine (p)U
AUCACCAACAGCC
AUAACAAAA(Lys/K) Lysine (b)AGA(Arg/R) Arginine (b)A
AUG ⇒(Met/M) Methionine (np)ACGAAGAGGG
GGUU(Val/V) Valine (np)GCU(Ala/A) Alanine (np)GAU(Asp/D) Aspartic acid (a)GGU(Gly/G) Glycine (np)U
GUCGCCGACGGCC
GUAGCAGAA(Glu/E) Glutamic acid (a)GGAA
GUG ⇒GCGGAGGGGG

As shown in the above table, NCBI table 1 includes the less-canonical start codons GUG and UUG.23

Inverse RNA codon table

Inverse table for the standard genetic code (compressed using IUPAC notation)24
Amino acidRNA codonsCompressedAmino acidRNA codonsCompressed
Ala, AGCU, GCC, GCA, GCGGCNIle, IAUU, AUC, AUAAUH
Arg, RCGU, CGC, CGA, CGG; AGA, AGGCGN, AGR; or CGY, MGRLeu, LCUU, CUC, CUA, CUG; UUA, UUGCUN, UUR; or CUY, YUR
Asn, NAAU, AACAAYLys, KAAA, AAGAAR
Asp, DGAU, GACGAYMet, MAUG
Asn or Asp, BAAU, AAC; GAU, GACRAYPhe, FUUU, UUCUUY
Cys, CUGU, UGCUGYPro, PCCU, CCC, CCA, CCGCCN
Gln, QCAA, CAGCARSer, SUCU, UCC, UCA, UCG; AGU, AGCUCN, AGY
Glu, EGAA, GAGGARThr, TACU, ACC, ACA, ACGACN
Gln or Glu, ZCAA, CAG; GAA, GAGSARTrp, WUGG
Gly, GGGU, GGC, GGA, GGGGGNTyr, YUAU, UACUAY
His, HCAU, CACCAYVal, VGUU, GUC, GUA, GUGGUN
STARTAUG, CUG, UUGHUGSTOPUAA, UGA, UAGURA, UAG; or UGA, UAR

Standard DNA codon table

Amino-acid biochemical propertiesNonpolar (np)Polar (p)Basic (b)Acidic (a)Termination: stop codon *Initiation: possible start codon ⇒
Standard genetic code2526
1stbase2nd base3rdbase
TCAG
TTTT(Phe/F) Phenylalanine (np)TCT(Ser/S) Serine (p)TAT(Tyr/Y) Tyrosine (p)TGT(Cys/C) Cysteine (p)T
TTCTCCTACTGCC
TTA(Leu/L) Leucine (np)TCATAAStop (Ochre) *27TGAStop (Opal) *28A
TTG ⇒TCGTAGStop (Amber) *29TGG(Trp/W) Tryptophan (np)G
CCTTCCT(Pro/P) Proline (np)CAT(His/H) Histidine (b)CGT(Arg/R) Arginine (b)T
CTCCCCCACCGCC
CTACCACAA(Gln/Q) Glutamine (p)CGAA
CTGCCGCAGCGGG
AATT(Ile/I) Isoleucine (np)ACT(Thr/T) Threonine (p)AAT(Asn/N) Asparagine (p)AGT(Ser/S) Serine (p)T
ATCACCAACAGCC
ATAACAAAA(Lys/K) Lysine (b)AGA(Arg/R) Arginine (b)A
ATG ⇒(Met/M) Methionine (np)ACGAAGAGGG
GGTT(Val/V) Valine (np)GCT(Ala/A) Alanine (np)GAT(Asp/D) Aspartic acid (a)GGT(Gly/G) Glycine (np)T
GTCGCCGACGGCC
GTAGCAGAA(Glu/E) Glutamic acid (a)GGAA
GTG ⇒GCGGAGGGGG

Inverse DNA codon table

Inverse table for the standard genetic code (compressed using IUPAC notation)30
Amino acidDNA codonsCompressedAmino acidDNA codonsCompressed
Ala, AGCT, GCC, GCA, GCGGCNIle, IATT, ATC, ATAATH
Arg, RCGT, CGC, CGA, CGG; AGA, AGGCGN, AGR; or CGY, MGRLeu, LCTT, CTC, CTA, CTG; TTA, TTGCTN, TTR; or CTY, YTR
Asn, NAAT, AACAAYLys, KAAA, AAGAAR
Asp, DGAT, GACGAYMet, MATG
Asn or Asp, BAAT, AAC; GAT, GACRAYPhe, FTTT, TTCTTY
Cys, CTGT, TGCTGYPro, PCCT, CCC, CCA, CCGCCN
Gln, QCAA, CAGCARSer, STCT, TCC, TCA, TCG; AGT, AGCTCN, AGY
Glu, EGAA, GAGGARThr, TACT, ACC, ACA, ACGACN
Gln or Glu, ZCAA, CAG; GAA, GAGSARTrp, WTGG
Gly, GGGT, GGC, GGA, GGGGGNTyr, YTAT, TACTAY
His, HCAT, CACCAYVal, VGTT, GTC, GTA, GTGGTN
STARTATG, TTG, GTG, CTG31NTGSTOPTAA, TGA, TAGTRA, TAR

Alternative codons in other translation tables

Further information: List of genetic codes

The genetic code was once believed to be universal:32 a codon would code for the same amino acid regardless of the organism or source. However, it is now agreed that the genetic code evolves,33 resulting in discrepancies in how a codon is translated depending on the genetic source.3435 For example, in 1981, it was discovered that the use of codons AUA, UGA, AGA and AGG by the coding system in mammalian mitochondria differed from the universal code.36 Stop codons can also be affected: in ciliated protozoa, the universal stop codons UAA and UAG code for glutamine.3738 Four novel alternative genetic codes (numbered here 34–37) were discovered in bacterial genomes by Shulgina and Eddy, revealing the first sense codon changes in bacteria.39 The following table displays these alternative codons.

Amino-acid biochemical propertiesNonpolar (np)Polar (p)Basic (b)Acidic (a)Termination: stop codon *
Comparison between codon translations with alternative and standard genetic codes4041
CodeTranslation tableDNA codon involvedRNA codon involvedTranslation with this codeStandard translationNotes
Standard1Includes translation table 8 (plant chloroplasts).
Vertebrate mitochondrial2AGAAGAStop *Arg (R) (b)
AGGAGGStop *Arg (R) (b)
ATAAUAMet (M) (np)Ile (I) (np)
TGAUGATrp (W) (np)Stop *
Yeast mitochondrial3ATAAUAMet (M) (np)Ile (I) (np)
CTTCUUThr (T) (p)Leu (L) (np)
CTCCUCThr (T) (p)Leu (L) (np)
CTACUAThr (T) (p)Leu (L) (np)
CTGCUGThr (T) (p)Leu (L) (np)
TGAUGATrp (W) (np)Stop *
CGACGAabsentArg (R) (b)
CGCCGCabsentArg (R) (b)
Mold, protozoan, and coelenterate mitochondrial + Mycoplasma / Spiroplasma4TGAUGATrp (W) (np)Stop *Includes the translation table 7 (kinetoplasts).
Invertebrate mitochondrial5AGAAGASer (S) (p)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
ATAAUAMet (M) (np)Ile (I) (np)
TGAUGATrp (W) (np)Stop *
Ciliate, dasycladacean and Hexamita nuclear6TAAUAAGln (Q) (p)Stop *
TAGUAGGln (Q) (p)Stop *
Echinoderm and flatworm mitochondrial9AAAAAAAsn (N) (p)Lys (K) (b)
AGAAGASer (S) (p)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
TGAUGATrp (W) (np)Stop *
Euplotid nuclear10TGAUGACys (C) (p)Stop *
Bacterial, archaeal and plant plastid11See translation table 1.
Alternative yeast nuclear12CTGCUGSer (S) (p)Leu (L) (np)
Ascidian mitochondrial13AGAAGAGly (G) (np)Arg (R) (b)
AGGAGGGly (G) (np)Arg (R) (b)
ATAAUAMet (M) (np)Ile (I) (np)
TGAUGATrp (W) (np)Stop *
Alternative flatworm mitochondrial14AAAAAAAsn (N) (p)Lys (K) (b)
AGAAGASer (S) (p)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
TAAUAATyr (Y) (p)Stop *
TGAUGATrp (W) (np)Stop *
Blepharisma nuclear15TAGUAGGln (Q) (p)Stop *As of Nov. 18, 2016: absent from the NCBI update. Similar to translation table 6.
Chlorophycean mitochondrial16TAGUAGLeu (L) (np)Stop *
Trematode mitochondrial21TGAUGATrp (W) (np)Stop *
ATAAUAMet (M) (np)Ile (I) (np)
AGAAGASer (S)Arg (R) (b)
AGGAGGSer (S) (p)Arg (R) (b)
AAAAAAAsn (N) (p)Lys (K) (b)
Scenedesmus obliquus mitochondrial22TCAUCAStop *Ser (S) (p)
TAGUAGLeu (L) (np)Stop *
Thraustochytrium mitochondrial23TTAUUAStop *Leu (L) (np)Similar to translation table 11.
Pterobranchia mitochondrial24AGAAGASer (S) (p)Arg (R) (b)
AGGAGGLys (K) (b)Arg (R) (b)
TGAUGATrp (W) (np)Stop *
Candidate division SR1 and Gracilibacteria25TGAUGAGly (G) (np)Stop *
Pachysolen tannophilus nuclear26CTGCUGAla (A) (np)Leu (L) (np)
Karyorelict nuclear27TAAUAAGln (Q) (p)Stop *
TAGUAGGln (Q) (p)Stop *
TGAUGAStop *orTrp (W) (np)Stop *
Condylostoma nuclear28TAAUAAStop *orGln (Q) (p)Stop *
TAGUAGStop *orGln (Q) (p)Stop *
TGAUGAStop *orTrp (W) (np)Stop *
Mesodinium nuclear29TAAUAATyr (Y) (p)Stop *
TAGUAGTyr (Y) (p)Stop *
Peritrich nuclear30TAUAAGlu (E) (a)Stop *
TAGUAGGlu (E) (a)Stop *
Blastocrithidia nuclear31TAAUAAStop *orGlu (E) (a)Stop *
TAGUAGStop *orGlu (E) (a)Stop *
TGAUGATrp (W) (np)Stop *
Cephalodiscidae mitochondrial code33AGAAGASer (S) (p)Arg (R) (b)Similar to translation table 24.
AGGAGGLys (K) (b)Arg (R) (b)
TAAUAATyr (Y) (p)Stop *
TGAUGATrp (W) (np)Stop *
Enterosoma34AGGAGGMet (M) (np)Arg (R) (b)
Peptacetobacter35CGGCGGGln (Q) (p)Arg (R) (b)
Anaerococcus and Onthovivens36CGGCGGTrp (W) (np)Arg (R) (b)
Absconditabacteraceae37CGACGATrp (W) (np)Arg (R) (b)
CGGCGGTrp (W) (np)Arg (R) (b)
TGAUGAGly (G) (np)Stop *

See also

  • Biology portal
  • Evolutionary biology portal

Notes

Further reading

References

  1. "Amino Acid Translation Table". Oregon State University. Archived from the original on 29 May 2020. Retrieved 2 December 2020. https://web.archive.org/web/20200529000711/http://sites.science.oregonstate.edu/genbio/otherresources/aminoacidtranslation.htm

  2. Bartee, Lisa; Brook, Jack. MHCC Biology 112: Biology for Health Professions. Open Oregon. p. 42. Archived from the original on 6 December 2020. Retrieved 6 December 2020. https://mhccbiology112.pressbooks.com

  3. Bartee, Lisa; Brook, Jack. MHCC Biology 112: Biology for Health Professions. Open Oregon. p. 42. Archived from the original on 6 December 2020. Retrieved 6 December 2020. https://mhccbiology112.pressbooks.com

  4. Elzanowski A, Ostell J (7 January 2019). "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 5 October 2020. Retrieved 21 February 2019. https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  5. "RNA Functions". Scitable. Nature Education. Archived from the original on 18 October 2008. Retrieved 5 January 2021. https://www.nature.com/scitable/topicpage/rna-functions-352/

  6. Elzanowski A, Ostell J (7 January 2019). "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 5 October 2020. Retrieved 21 February 2019. https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  7. "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 13 May 2011. Retrieved 2 December 2020. https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  8. "Codon". National Human Genome Research Institute. Archived from the original on 22 October 2020. Retrieved 10 October 2020. https://www.genome.gov/genetics-glossary/Codon

  9. Each stop codon has a specific name: UAG is amber, UGA is opal and UAA is ochre,[7] (sometimes for UGA, umber is used instead of opal).[8] In DNA, these stop codons are TAG, TGA, and TAA, respectively.

  10. Maloy S. (29 November 2003). "How nonsense mutations got their names". Microbial Genetics Course. San Diego State University. Archived from the original on 23 September 2020. Retrieved 10 October 2020. https://web.archive.org/web/20200923075442/http://www.sci.sdsu.edu/~smaloy/MicrobialGenetics/topics/rev-sup/amber-name.html

  11. Elzanowski A, Ostell J (7 January 2019). "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 5 October 2020. Retrieved 21 February 2019. https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  12. Hinnebusch AG (2011). "Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes". Microbiology and Molecular Biology Reviews. 75 (3): 434–467. doi:10.1128/MMBR.00008-11. PMC 3165540. PMID 21885680. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165540

  13. Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S (2003). "Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons". Biology of the Cell. 95 (3–4): 169–78. doi:10.1016/S0248-4900(03)00033-9. PMID 12867081. https://doi.org/10.1016%2FS0248-4900%2803%2900033-9

  14. Elzanowski A, Ostell J (7 January 2019). "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 5 October 2020. Retrieved 21 February 2019. https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  15. Touriol C, Bornes S, Bonnal S, Audigier S, Prats H, Prats AC, Vagner S (2003). "Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons". Biology of the Cell. 95 (3–4): 169–78. doi:10.1016/S0248-4900(03)00033-9. PMID 12867081. https://doi.org/10.1016%2FS0248-4900%2803%2900033-9

  16. Saier, Milton H. Jr. (10 July 2019). "Understanding the Genetic Code". J Bacteriol. 201 (15): e00091-19. doi:10.1128/JB.00091-19. PMC 6620406. PMID 31010904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6620406

  17. Muto, A.; Osawa, S. (January 1987). "The guanine and cytosine content of genomic DNA and bacterial evolution". Proc Natl Acad Sci USA. 84 (1): 166–9. Bibcode:1987PNAS...84..166M. doi:10.1073/pnas.84.1.166. PMC 304163. PMID 3467347. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC304163

  18. "Amino Acid Translation Table". Oregon State University. Archived from the original on 29 May 2020. Retrieved 2 December 2020. https://web.archive.org/web/20200529000711/http://sites.science.oregonstate.edu/genbio/otherresources/aminoacidtranslation.htm

  19. "The Information in DNA Determines Cellular Function via Translation". Scitable. Nature Education. Archived from the original on 23 September 2017. Retrieved 5 December 2020. https://www.nature.com/scitable/topicpage/the-information-in-dna-determines-cellular-function-6523228/

  20. The historical basis for designating the stop codons as amber, ochre and opal is described in the autobiography of Sydney Brenner[15] and in a historical article by Bob Edgar.[16] /wiki/Stop_codon#Nomenclature

  21. The historical basis for designating the stop codons as amber, ochre and opal is described in the autobiography of Sydney Brenner[15] and in a historical article by Bob Edgar.[16] /wiki/Stop_codon#Nomenclature

  22. The historical basis for designating the stop codons as amber, ochre and opal is described in the autobiography of Sydney Brenner[15] and in a historical article by Bob Edgar.[16] /wiki/Stop_codon#Nomenclature

  23. Elzanowski A, Ostell J (7 January 2019). "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 5 October 2020. Retrieved 21 February 2019. https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  24. IUPAC—IUB Commission on Biochemical Nomenclature. "Abbreviations and Symbols for Nucleic Acids, Polynucleotides and Their Constituents" (PDF). International Union of Pure and Applied Chemistry. Archived (PDF) from the original on 9 July 2021. Retrieved 5 December 2020. http://publications.iupac.org/pac/1974/pdf/4003x0277.pdf

  25. "What does DNA do?". Your Genome. Welcome Genome Campus. Archived from the original on 29 November 2020. Retrieved 12 January 2021. https://web.archive.org/web/20201129044637/https://www.yourgenome.org/facts/what-does-dna-do

  26. The major difference between DNA and RNA is that thymine (T) is only found in the former. In RNA, it is replaced with uracil (U).[19] This is the only difference between the standard RNA codon table and the standard DNA codon table. /wiki/Thymine

  27. The historical basis for designating the stop codons as amber, ochre and opal is described in the autobiography of Sydney Brenner[15] and in a historical article by Bob Edgar.[16] /wiki/Stop_codon#Nomenclature

  28. The historical basis for designating the stop codons as amber, ochre and opal is described in the autobiography of Sydney Brenner[15] and in a historical article by Bob Edgar.[16] /wiki/Stop_codon#Nomenclature

  29. The historical basis for designating the stop codons as amber, ochre and opal is described in the autobiography of Sydney Brenner[15] and in a historical article by Bob Edgar.[16] /wiki/Stop_codon#Nomenclature

  30. IUPAC—IUB Commission on Biochemical Nomenclature. "Abbreviations and Symbols for Nucleic Acids, Polynucleotides and Their Constituents" (PDF). International Union of Pure and Applied Chemistry. Archived (PDF) from the original on 9 July 2021. Retrieved 5 December 2020. http://publications.iupac.org/pac/1974/pdf/4003x0277.pdf

  31. "Choose a start codon". depts.washington.edu. Retrieved 2024-08-14. https://depts.washington.edu/agro/genomes/students/stanstart.htm

  32. Osawa, A (November 1993). "Evolutionary changes in the genetic code". Comparative Biochemistry and Physiology. 106 (2): 489–94. doi:10.1016/0305-0491(93)90122-l. PMID 8281749. Archived from the original on 2020-12-06. Retrieved 2020-12-05. https://pubmed.ncbi.nlm.nih.gov/8281749/

  33. Osawa S, Jukes TH, Watanabe K, Muto A (March 1992). "Recent evidence for evolution of the genetic code". Microbiological Reviews. 56 (1): 229–64. doi:10.1128/MR.56.1.229-264.1992. PMC 372862. PMID 1579111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372862

  34. Osawa, A (November 1993). "Evolutionary changes in the genetic code". Comparative Biochemistry and Physiology. 106 (2): 489–94. doi:10.1016/0305-0491(93)90122-l. PMID 8281749. Archived from the original on 2020-12-06. Retrieved 2020-12-05. https://pubmed.ncbi.nlm.nih.gov/8281749/

  35. Osawa S, Jukes TH, Watanabe K, Muto A (March 1992). "Recent evidence for evolution of the genetic code". Microbiological Reviews. 56 (1): 229–64. doi:10.1128/MR.56.1.229-264.1992. PMC 372862. PMID 1579111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372862

  36. Osawa, A (November 1993). "Evolutionary changes in the genetic code". Comparative Biochemistry and Physiology. 106 (2): 489–94. doi:10.1016/0305-0491(93)90122-l. PMID 8281749. Archived from the original on 2020-12-06. Retrieved 2020-12-05. https://pubmed.ncbi.nlm.nih.gov/8281749/

  37. Osawa S, Jukes TH, Watanabe K, Muto A (March 1992). "Recent evidence for evolution of the genetic code". Microbiological Reviews. 56 (1): 229–64. doi:10.1128/MR.56.1.229-264.1992. PMC 372862. PMID 1579111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372862

  38. Euplotes octacarinatus is an exception.[22] /wiki/Euplotes_octacarinatus

  39. Shulgina, Yekaterina; Eddy, Sean R. (9 November 2021). "A computational screen for alternative genetic codes in over 250,000 genomes". eLife. 10. doi:10.7554/eLife.71402. PMC 8629427. PMID 34751130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629427

  40. Elzanowski A, Ostell J (7 January 2019). "The Genetic Codes". National Center for Biotechnology Information. Archived from the original on 5 October 2020. Retrieved 21 February 2019. https://web.archive.org/web/20201005105339/https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

  41. Shulgina, Yekaterina; Eddy, Sean R. (9 November 2021). "A computational screen for alternative genetic codes in over 250,000 genomes". eLife. 10. doi:10.7554/eLife.71402. PMC 8629427. PMID 34751130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629427