Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of lead
Isotopes of lead

Lead (82Pb) has four observationally stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series (or radium series), the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium. (See lead–lead dating and uranium–lead dating.)

The longest-lived radioisotopes are 205Pb with a half-life of 17.3 million years and 202Pb with a half-life of 52,500 years. A shorter-lived naturally occurring radioisotope, 210Pb with a half-life of 22.2 years, is useful for studying the sedimentation chronology of environmental samples on time scales shorter than 100 years.

The relative abundances of the four stable isotopes are approximately 1.5%, 24%, 22%, and 52.5%, combining to give a standard atomic weight (abundance-weighted average of the stable isotopes) of 207.2(1). Lead is the element with the heaviest stable isotope, 208Pb. (The more massive 209Bi, long considered to be stable, actually has a half-life of 2.01×1019 years.) 208Pb is also a doubly magic isotope, as it has 82 protons and 126 neutrons. It is the heaviest doubly magic nuclide known. A total of 43 lead isotopes are now known, including very unstable synthetic species.

The four primordial isotopes of lead are all observationally stable, meaning that they are predicted to undergo radioactive decay but no decay has been observed yet. These four isotopes are predicted to undergo alpha decay and become isotopes of mercury which are themselves radioactive or observationally stable.

In its fully ionized state, the beta decay of isotope 210Pb does not release a free electron; the generated electron is instead captured by the atom's empty orbitals.

We don't have any images related to Isotopes of lead yet.
We don't have any YouTube videos related to Isotopes of lead yet.
We don't have any PDF documents related to Isotopes of lead yet.
We don't have any Books related to Isotopes of lead yet.
We don't have any archived web articles related to Isotopes of lead yet.

List of isotopes

Nuclide4HistoricnameZNIsotopic mass (Da)567Half-life8Decaymode910Daughterisotope1112Spin andparity131415Natural abundance (mole fraction)
Excitation energy16Normal proportion17Range of variation
178Pb8296178.003836(25)250(80) μsα174Hg0+
β+?178Tl
179Pb8297179.002(87)2.7(2) msα175Hg(9/2−)
180Pb8298179.997916(13)4.1(3) msα176Hg0+
181Pb8299180.996661(91)39.0(8) msα177Hg(9/2−)
β+?181Tl
182Pb82100181.992674(13)55(5) msα178Hg0+
β+?182Tl
183Pb82101182.991863(31)535(30) msα179Hg3/2−
β+?183Tl
183mPb94(8) keV415(20) msα179Hg13/2+
β+?183Tl
IT?183Pb
184Pb82102183.988136(14)490(25) msα (80%)180Hg0+
β+? (20%)184Tl
185Pb82103184.987610(17)6.3(4) sβ+ (66%)185Tl3/2−
α (34%)181Hg
185mPb1870(50) keV4.07(15) sα (50%)181Hg13/2+
β+? (50%)185Tl
186Pb82104185.984239(12)4.82(3) sβ+? (60%)186Tl0+
α (40%)182Hg
187Pb82105186.9839108(55)15.2(3) sβ+ (90.5%)187Tl3/2−
α (9.5%)183Hg
187mPb1919(10) keV18.3(3) sβ+ (88%)187Tl13/2+
α (12%)183Hg
188Pb82106187.980879(11)25.1(1) sβ+ (91.5%)188Tl0+
α (8.5%)184Hg
188m1Pb2577.2(4) keV800(20) nsIT188Pb8−
188m2Pb2709.8(5) keV94(12) nsIT188Pb12+
188m3Pb4783.4(7) keV440(60) nsIT188Pb(19−)
189Pb82107188.980844(15)39(8) sβ+ (99.58%)189Tl3/2−
α (0.42%)185Hg
189m1Pb40(4) keV50.5(21) sβ+ (99.6%)189Tl13/2+
α (0.4%)185Hg
IT?189Pb
189m2Pb2475(4) keV26(5) μsIT189Pb31/2−
190Pb82108189.978082(13)71(1) sβ+ (99.60%)190Tl0+
α (0.40%)186Hg
190m1Pb2614.8(8) keV150(14) nsIT190Pb10+
190m2Pb2665(50)# keV24.3(21) μsIT190Pb(12+)
190m3Pb2658.2(8) keV7.7(3) μsIT190Pb11−
191Pb82109190.9782165(71)1.33(8) minβ+ (99.49%)191Tl3/2−
α (0.51%)187Hg
191m1Pb58(10) keV2.18(8) minβ+ (99.98%)191Tl13/2+
α (0.02%)187Hg
191m2Pb2659(10) keV180(80) nsIT191Pb33/2+
192Pb82110191.9757896(61)3.5(1) minβ+ (99.99%)192Tl0+
α (0.0059%)188Hg
192m1Pb2581.1(1) keV166(6) nsIT192Pb10+
192m2Pb2625.1(11) keV1.09(4) μsIT192Pb12+
192m3Pb2743.5(4) keV756(14) nsIT192Pb11−
193Pb82111192.976136(11)4# minβ+?193Tl3/2−#
193m1Pb93(12) keV5.8(2) minβ+193Tl13/2+
193m2Pb2707(13) keV180(15) nsIT193Pb33/2+
194Pb82112193.974012(19)10.7(6) minβ+194Tl0+
α (7.3×10−6%)190Hg
194m1Pb2628.1(4) keV370(13) nsIT194Pb12+
194m2Pb2933.0(4) keV133(7) nsIT194Pb11−
195Pb82113194.9745162(55)15.0(14) minβ+195Tl3/2-
195m1Pb202.9(7) keV15.0(12) minβ+195Tl13/2+
IT?195Pb
195m2Pb1759.0(7) keV10.0(7) μsIT195Pb21/2−
195m3Pb2901.7(8) keV95(20) nsIT195Pb33/2+
196Pb82114195.9727876(83)37(3) minβ+196Tl0+
α (<3×10−5%)192Hg
196m1Pb1797.51(14) keV140(14) nsIT196Pb5−
196m2Pb2694.6(3) keV270(4) nsIT196Pb12+
197Pb82115196.9734347(52)8.1(17) minβ+197Tl3/2−
197m1Pb319.31(11) keV42.9(9) minβ+ (81%)197Tl13/2+
IT (19%)197Pb
197m2Pb1914.10(25) keV1.15(20) μsIT197Pb21/2−
198Pb82116197.9720155(94)2.4(1) hβ+198Tl0+
198m1Pb2141.4(4) keV4.12(7) μsIT198Pb7−
198m2Pb2231.4(5) keV137(10) nsIT198Pb9−
198m3Pb2821.7(6) keV212(4) nsIT198Pb12+
199Pb82117198.9729126(73)90(10) minβ+199Tl3/2−
199m1Pb429.5(27) keV12.2(3) minIT199Pb(13/2+)
β+?199Tl
199m2Pb2563.8(27) keV10.1(2) μsIT199Pb(29/2−)
200Pb82118199.971819(11)21.5(4) hEC200Tl0+
200m1Pb2183.3(11) keV456(6) nsIT200Pb(9−)
200m2Pb3005.8(12) keV198(3) nsIT200Pb12+)
201Pb82119200.972870(15)9.33(3) hβ+201Tl5/2−
201m1Pb629.1(3) keV60.8(18) sIT201Pb13/2+
β+?201Tl
201m2Pb2953(20) keV508(3) nsIT201Pb(29/2−)
202Pb82120201.9721516(41)5.25(28)×104 yEC202Tl0+
202m1Pb2169.85(8) keV3.54(2) hIT (90.5%)202Pb9−
β+ (9.5%)202Tl
202m2Pb4140(50)# keV100(3) nsIT202Pb16+
202m3Pb5300(50)# keV108(3) nsIT202Pb19−
203Pb82121202.9733906(70)51.924(15) hEC203Tl5/2−
203m1Pb825.2(3) keV6.21(8) sIT203Pb13/2+
203m2Pb2949.2(4) keV480(7) msIT203Pb29/2−
203m3Pb2970(50)# keV122(4) nsIT203Pb25/2−#
204Pb2082122203.9730435(12)Observationally stable210+0.014(6)0.0000–0.015822
204m1Pb1274.13(5) keV265(6) nsIT204Pb4+
204m2Pb2185.88(8) keV66.93(10) minIT204Pb9−
204m3Pb2264.42(6) keV490(70) nsIT204Pb7−
205Pb82123204.9744817(12)1.70(9)×107 yEC205Tl5/2−
205m1Pb2.329(7) keV24.2(4) μsIT205Pb1/2−
205m2Pb1013.85(3) keV5.55(2) msIT205Pb13/2+
205m3Pb3195.8(6) keV217(5) nsIT205Pb25/2−
206Pb2324Radium G2582124205.9744652(12)Observationally stable260+0.241(30)0.0190–0.867327
206m1Pb2200.16(4) keV125(2) μsIT206Pb7−
206m2Pb4027.3(7) keV202(3) nsIT206Pb12+
207Pb2829Actinium D82125206.9758968(12)Observationally stable301/2−0.221(50)0.0035–0.235131
207mPb1633.356(4) keV806(5) msIT207Pb13/2+
208Pb32Thorium D82126207.9766520(12)Observationally stable330+0.524(70)0.0338–0.977534
208mPb4895.23(5) keV535(35) nsIT208Pb10+
209Pb82127208.9810900(19)3.235(5) hβ−209Bi9/2+Trace35
210PbRadium DRadioleadRadio-lead82128209.9841884(16)22.20(22) yβ− (100%)210Bi0+Trace36
α (1.9×10−6%)206Hg
210m1Pb1194.61(18) keV92(10) nsIT210Pb6+
210m2Pb1274.8(3) keV201(17) nsIT210Pb8+
211PbActinium B82129210.9887353(24)36.1628(25) minβ−211Bi9/2+Trace37
211mPb1719(23) keV159(28) nsIT211Pb(27/2+)
212PbThorium B82130211.9918959(20)10.627(6) hβ−212Bi0+Trace38
212mPb1335(2) keV6.0(8) μsIT212Pb8+#
213Pb82131212.9965608(75)10.2(3) minβ−213Bi(9/2+)Trace39
213mPb1331.0(17) keV260(20) nsIT213Pb(21/2+)
214PbRadium B82132213.9998035(21)27.06(7) minβ−214Bi0+Trace40
214mPb1420(20) keV6.2(3) μsIT214Pb8+#
215Pb82133215.004662(57)142(11) sβ−215Bi9/2+#
216Pb82134216.00806(22)#1.66(20) minβ−216Bi0+
216mPb1514(20) keV400(40) nsIT216Pb8+#
217Pb82135217.01316(32)#19.9(53) sβ−217Bi9/2+#
218Pb82136218.01678(32)#14.8(68) sβ−218Bi0+
219Pb82137219.02214(43)#3# s[>300 ns]β−?219Bi11/2+#
220Pb82138220.02591(43)#1# s[>300 ns]β−?220Bi0+
This table header & footer:
  • view

Lead-206

See also: Decay chain

206Pb is the final step in the decay chain of 238U, the "radium series" or "uranium series". In a closed system, over time, a given mass of 238U will decay in a sequence of steps culminating in 206Pb. The production of intermediate products eventually reaches an equilibrium (though this takes a long time, as the half-life of 234U is 245,500 years). Once this stabilized system is reached, the ratio of 238U to 206Pb will steadily decrease, while the ratios of the other intermediate products to each other remain constant.

Like most radioisotopes found in the radium series, 206Pb was initially named as a variation of radium, specifically radium G. It is the decay product of both 210Po (historically called radium F) by alpha decay, and the much rarer 206Tl (radium EII) by beta decay.

Lead-206 has been proposed for use in fast breeder nuclear fission reactor coolant over the use of natural lead mixture (which also includes other stable lead isotopes) as a mechanism to improve neutron economy and greatly suppress unwanted production of highly radioactive byproducts.41

Lead-204, -207, and -208

204Pb is entirely primordial, and is thus useful for estimating the fraction of the other lead isotopes in a given sample that are also primordial, since the relative fractions of the various primordial lead isotopes is constant everywhere.42 Any excess lead-206, -207, and -208 is thus assumed to be radiogenic in origin,43 allowing various uranium and thorium dating schemes to be used to estimate the age of rocks (time since their formation) based on the relative abundance of lead-204 to other isotopes. 207Pb is the end of the actinium series from 235U.

208Pb is the end of the thorium series from 232Th. While it only makes up approximately half of the composition of lead in most places on Earth, it can be found naturally enriched up to around 90% in thorium ores.44 208Pb is the heaviest known stable nuclide and also the heaviest known doubly magic nucleus, as Z = 82 and N = 126 correspond to closed nuclear shells.45 As a consequence of this particularly stable configuration, its neutron capture cross section is very low (even lower than that of deuterium in the thermal spectrum), making it of interest for lead-cooled fast reactors.

In 2025 a published study suggested that the nucleus of 208Pb is not perfectly spherical as previously believed.46

Lead-212

212Pb-containing radiopharmaceuticals have been trialed as therapeutic agents for the experimental cancer treatment targeted alpha-particle therapy.47

Sources

Isotope masses from:

Half-life, spin, and isomer data selected from the following sources.

References

  1. Jeter, Hewitt W. (March 2000). "Determining the Ages of Recent Sediments Using Measurements of Trace Radioactivity" (PDF). Terra et Aqua (78): 21–28. Archived from the original (PDF) on March 4, 2016. Retrieved October 23, 2019. https://web.archive.org/web/20160304043824/https://www.iadc-dredging.com/ul/cms/terraetaqua/document/0/9/0/90/90/1/terra-et-aqua-nr78-03.pdf

  2. Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707. https://www.researchgate.net/publication/232899048

  3. Takahashi, K; Boyd, R. N.; Mathews, G. J.; Yokoi, K. (October 1987). "Bound-state beta decay of highly ionized atoms". Physical Review C. 36 (4): 1522–1528. Bibcode:1987PhRvC..36.1522T. doi:10.1103/PhysRevC.36.1522. ISSN 0556-2813. OCLC 1639677. PMID 9954244. Retrieved 2016-11-20. As can be seen in Table I (187Re, 210Pb, 227Ac, and 241Pu), some continuum-state decays are energetically forbidden when the atom is fully ionized. This is because the atomic binding energies liberated by ionization, i.e., the total electron binding in the neutral atom, Bn, increases with Z. If [the decay energy] Qnhttps://www.researchgate.net/publication/13335547

  4. mPb – Excited nuclear isomer. /wiki/Nuclear_isomer

  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  6. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  7. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  10. Modes of decay: EC:Electron captureIT:Isomeric transition /wiki/Electron_capture

  11. Bold italics symbol as daughter – Daughter product is nearly stable.

  12. Bold symbol as daughter – Daughter product is stable.

  13. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  14. ( ) spin value – Indicates spin with weak assignment arguments.

  15. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  16. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  17. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  18. Order of ground state and isomer is uncertain.

  19. Order of ground state and isomer is uncertain.

  20. Used in lead–lead dating /wiki/Lead%E2%80%93lead_dating

  21. Believed to undergo α decay to 200Hg with a half-life over 1.4×1020 years; the theoretical lifetime is around ~1035–37 years.[9] /wiki/Half-life

  22. "Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm

  23. Used in lead–lead dating /wiki/Lead%E2%80%93lead_dating

  24. Final decay product of 4n+2 decay chain (the Radium or Uranium series) /wiki/Decay_product

  25. Kuhn, W. (1929). "LXVIII. Scattering of thorium C" γ-radiation by radium G and ordinary lead". The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 8 (52): 628. doi:10.1080/14786441108564923. /wiki/Doi_(identifier)

  26. Believed to undergo α decay to 202Hg with a half-life over 2.5×1021 years; the theoretical lifetime is ~1065–68 years.[9]

  27. "Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm

  28. Used in lead–lead dating /wiki/Lead%E2%80%93lead_dating

  29. Final decay product of 4n+3 decay chain (the Actinium series) /wiki/Actinium_series

  30. Believed to undergo α decay to 203Hg with a half-life over 1.9×1021 years; the theoretical lifetime is ~10152–189 years.[9]

  31. "Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm

  32. Heaviest observationally stable nuclide; final decay product of 4n decay chain (the Thorium series) /wiki/Thorium_series

  33. Believed to undergo α decay to 204Hg with a half-life over 2.6×1021 years; the theoretical lifetime is ~10124–132 years.[9]

  34. "Standard Atomic Weights: Lead". CIAAW. 2020. https://www.ciaaw.org/lead.htm

  35. Intermediate decay product of 237Np /wiki/Neptunium-237

  36. Intermediate decay product of 238U /wiki/Decay_product

  37. Intermediate decay product of 235U /wiki/Decay_product

  38. Intermediate decay product of 232Th /wiki/Decay_product

  39. Intermediate decay product of 237Np /wiki/Neptunium-237

  40. Intermediate decay product of 238U /wiki/Decay_product

  41. Khorasanov, G. L.; Ivanov, A. P.; Blokhin, A. I. (2002). Polonium Issue in Fast Reactor Lead Coolants and One of the Ways of Its Solution. 10th International Conference on Nuclear Engineering. pp. 711–717. doi:10.1115/ICONE10-22330. https://www.researchgate.net/publication/255203791

  42. Woods, G.D. (November 2014). Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode (PDF) (Report). Stockport, UK: Agilent Technologies. https://www.agilent.com/cs/library/applications/5991-5270EN_AppNote8800_ICP-QQQ_Pb.pdf

  43. Woods, G.D. (November 2014). Lead isotope analysis: Removal of 204Hg isobaric interference from 204Pb using ICP-QQQ in MS/MS mode (PDF) (Report). Stockport, UK: Agilent Technologies. https://www.agilent.com/cs/library/applications/5991-5270EN_AppNote8800_ICP-QQQ_Pb.pdf

  44. A. Yu. Smirnov; V. D. Borisevich; A. Sulaberidze (July 2012). "Evaluation of specific cost of obtainment of lead-208 isotope by gas centrifuges using various raw materials". Theoretical Foundations of Chemical Engineering. 46 (4): 373–378. doi:10.1134/S0040579512040161. S2CID 98821122. /wiki/Doi_(identifier)

  45. Blank, B.; Regan, P.H. (2000). "Magic and doubly-magic nuclei". Nuclear Physics News. 10 (4): 20–27. doi:10.1080/10506890109411553. S2CID 121966707. https://www.researchgate.net/publication/232899048

  46. Henderson, J.; Heery, J.; Rocchini, M.; Siciliano, M.; Sensharma, N.; Ayangeakaa, A. D.; Janssens, R. V. F.; Kowalewski, T. M.; Abhishek; Stevenson, P. D.; Yüksel, E.; Brown, B. A.; Rodriguez, T. R.; Robledo, L. M.; Wu, C. Y. (2025-02-14). "Deformation and Collectivity in Doubly Magic Pb208". Physical Review Letters. 134 (6): 062502. doi:10.1103/PhysRevLett.134.062502. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.134.062502

  47. Kokov, K.V.; Egorova, B.V.; German, M.N.; Klabukov, I.D.; Krasheninnikov, M.E.; Larkin-Kondrov, A.A.; Makoveeva, K.A.; Ovchinnikov, M.V.; Sidorova, M.V.; Chuvilin, D.Y. (2022). "212Pb: Production Approaches and Targeted Therapy Applications". Pharmaceutics. 14 (1): 189. doi:10.3390/pharmaceutics14010189. ISSN 1999-4923. PMC 8777968. PMID 35057083. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8777968