Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Hyperbolic functions
Mathematical functions for hyperbolas similar to trigonometric functions for circles

In mathematics, hyperbolic functions are analogues of trigonometric functions defined using the hyperbola rather than the circle. The basic functions include hyperbolic sine (sinh) and cosine (cosh), from which are derived others like tanh and coth. They take a real argument called a hyperbolic angle, related to the area of a hyperbolic sector. Hyperbolic functions appear in hyperbolic geometry, special relativity via Lorentz boosts, and solutions to linear differential equations. In complex analysis, they arise from applying sine and cosine to imaginary angles and are entire functions. Their values are transcendental for non-zero algebraic arguments by the Lindemann–Weierstrass theorem.

Related Image Collections Add Image
We don't have any YouTube videos related to Hyperbolic functions yet.
We don't have any PDF documents related to Hyperbolic functions yet.
We don't have any Books related to Hyperbolic functions yet.
We don't have any archived web articles related to Hyperbolic functions yet.

History

The first known calculation of a hyperbolic trigonometry problem is attributed to Gerardus Mercator when issuing the Mercator map projection circa 1566. It requires tabulating solutions to a transcendental equation involving hyperbolic functions.14

The first to suggest a similarity between the sector of the circle and that of the hyperbola was Isaac Newton in his 1687 Principia Mathematica.15

Roger Cotes suggested to modify the trigonometric functions using the imaginary unit i = − 1 {\displaystyle i={\sqrt {-1}}} to obtain an oblate spheroid from a prolate one.16

Hyperbolic functions were formally introduced in 1757 by Vincenzo Riccati.171819 Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions.20 As early as 1759, Daviet de Foncenex showed the interchangeability of the trigonometric and hyperbolic functions using the imaginary unit and extended de Moivre's formula to hyperbolic functions.2122

During the 1760s, Johann Heinrich Lambert systematized the use functions and provided exponential expressions in various publications.2324 Lambert credited Riccati for the terminology and names of the functions, but altered the abbreviations to those used today.2526

Notation

Main article: Trigonometric functions § Notation

Definitions

There are various equivalent ways to define the hyperbolic functions.

Exponential definitions

In terms of the exponential function:2728

  • Hyperbolic sine: the odd part of the exponential function, that is, sinh ⁡ x = e x − e − x 2 = e 2 x − 1 2 e x = 1 − e − 2 x 2 e − x . {\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}={\frac {e^{2x}-1}{2e^{x}}}={\frac {1-e^{-2x}}{2e^{-x}}}.}
  • Hyperbolic cosine: the even part of the exponential function, that is, cosh ⁡ x = e x + e − x 2 = e 2 x + 1 2 e x = 1 + e − 2 x 2 e − x . {\displaystyle \cosh x={\frac {e^{x}+e^{-x}}{2}}={\frac {e^{2x}+1}{2e^{x}}}={\frac {1+e^{-2x}}{2e^{-x}}}.}
  • Hyperbolic tangent: tanh ⁡ x = sinh ⁡ x cosh ⁡ x = e x − e − x e x + e − x = e 2 x − 1 e 2 x + 1 . {\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}={\frac {e^{x}-e^{-x}}{e^{x}+e^{-x}}}={\frac {e^{2x}-1}{e^{2x}+1}}.}
  • Hyperbolic cotangent: for x ≠ 0, coth ⁡ x = cosh ⁡ x sinh ⁡ x = e x + e − x e x − e − x = e 2 x + 1 e 2 x − 1 . {\displaystyle \coth x={\frac {\cosh x}{\sinh x}}={\frac {e^{x}+e^{-x}}{e^{x}-e^{-x}}}={\frac {e^{2x}+1}{e^{2x}-1}}.}
  • Hyperbolic secant: sech ⁡ x = 1 cosh ⁡ x = 2 e x + e − x = 2 e x e 2 x + 1 . {\displaystyle \operatorname {sech} x={\frac {1}{\cosh x}}={\frac {2}{e^{x}+e^{-x}}}={\frac {2e^{x}}{e^{2x}+1}}.}
  • Hyperbolic cosecant: for x ≠ 0, csch ⁡ x = 1 sinh ⁡ x = 2 e x − e − x = 2 e x e 2 x − 1 . {\displaystyle \operatorname {csch} x={\frac {1}{\sinh x}}={\frac {2}{e^{x}-e^{-x}}}={\frac {2e^{x}}{e^{2x}-1}}.}

Differential equation definitions

The hyperbolic functions may be defined as solutions of differential equations: The hyperbolic sine and cosine are the solution (s, c) of the system c ′ ( x ) = s ( x ) , s ′ ( x ) = c ( x ) , {\displaystyle {\begin{aligned}c'(x)&=s(x),\\s'(x)&=c(x),\\\end{aligned}}} with the initial conditions s ( 0 ) = 0 , c ( 0 ) = 1. {\displaystyle s(0)=0,c(0)=1.} The initial conditions make the solution unique; without them any pair of functions ( a e x + b e − x , a e x − b e − x ) {\displaystyle (ae^{x}+be^{-x},ae^{x}-be^{-x})} would be a solution.

sinh(x) and cosh(x) are also the unique solution of the equation f ″(x) = f (x), such that f (0) = 1, f ′(0) = 0 for the hyperbolic cosine, and f (0) = 0, f ′(0) = 1 for the hyperbolic sine.

Complex trigonometric definitions

Hyperbolic functions may also be deduced from trigonometric functions with complex arguments:

  • Hyperbolic sine:29 sinh ⁡ x = − i sin ⁡ ( i x ) . {\displaystyle \sinh x=-i\sin(ix).}
  • Hyperbolic cosine:30 cosh ⁡ x = cos ⁡ ( i x ) . {\displaystyle \cosh x=\cos(ix).}
  • Hyperbolic tangent: tanh ⁡ x = − i tan ⁡ ( i x ) . {\displaystyle \tanh x=-i\tan(ix).}
  • Hyperbolic cotangent: coth ⁡ x = i cot ⁡ ( i x ) . {\displaystyle \coth x=i\cot(ix).}
  • Hyperbolic secant: sech ⁡ x = sec ⁡ ( i x ) . {\displaystyle \operatorname {sech} x=\sec(ix).}
  • Hyperbolic cosecant: csch ⁡ x = i csc ⁡ ( i x ) . {\displaystyle \operatorname {csch} x=i\csc(ix).}

where i is the imaginary unit with i2 = −1.

The above definitions are related to the exponential definitions via Euler's formula (See § Hyperbolic functions for complex numbers below).

Characterizing properties

Hyperbolic cosine

It can be shown that the area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the arc length corresponding to that interval:31 area = ∫ a b cosh ⁡ x d x = ∫ a b 1 + ( d d x cosh ⁡ x ) 2 d x = arc length. {\displaystyle {\text{area}}=\int _{a}^{b}\cosh x\,dx=\int _{a}^{b}{\sqrt {1+\left({\frac {d}{dx}}\cosh x\right)^{2}}}\,dx={\text{arc length.}}}

Hyperbolic tangent

The hyperbolic tangent is the (unique) solution to the differential equation f ′ = 1 − f 2, with f (0) = 0.3233

Useful relations

The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities. In fact, Osborn's rule34 states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for θ {\displaystyle \theta } , 2 θ {\displaystyle 2\theta } , 3 θ {\displaystyle 3\theta } or θ {\displaystyle \theta } and φ {\displaystyle \varphi } into a hyperbolic identity, by:

  1. expanding it completely in terms of integral powers of sines and cosines,
  2. changing sine to sinh and cosine to cosh, and
  3. switching the sign of every term containing a product of two sinhs.

Odd and even functions: sinh ⁡ ( − x ) = − sinh ⁡ x cosh ⁡ ( − x ) = cosh ⁡ x {\displaystyle {\begin{aligned}\sinh(-x)&=-\sinh x\\\cosh(-x)&=\cosh x\end{aligned}}}

Hence: tanh ⁡ ( − x ) = − tanh ⁡ x coth ⁡ ( − x ) = − coth ⁡ x sech ⁡ ( − x ) = sech ⁡ x csch ⁡ ( − x ) = − csch ⁡ x {\displaystyle {\begin{aligned}\tanh(-x)&=-\tanh x\\\coth(-x)&=-\coth x\\\operatorname {sech} (-x)&=\operatorname {sech} x\\\operatorname {csch} (-x)&=-\operatorname {csch} x\end{aligned}}}

Thus, cosh x and sech x are even functions; the others are odd functions.

arsech ⁡ x = arcosh ⁡ ( 1 x ) arcsch ⁡ x = arsinh ⁡ ( 1 x ) arcoth ⁡ x = artanh ⁡ ( 1 x ) {\displaystyle {\begin{aligned}\operatorname {arsech} x&=\operatorname {arcosh} \left({\frac {1}{x}}\right)\\\operatorname {arcsch} x&=\operatorname {arsinh} \left({\frac {1}{x}}\right)\\\operatorname {arcoth} x&=\operatorname {artanh} \left({\frac {1}{x}}\right)\end{aligned}}}

Hyperbolic sine and cosine satisfy: cosh ⁡ x + sinh ⁡ x = e x cosh ⁡ x − sinh ⁡ x = e − x {\displaystyle {\begin{aligned}\cosh x+\sinh x&=e^{x}\\\cosh x-\sinh x&=e^{-x}\end{aligned}}}

which are analogous to Euler's formula, and

cosh 2 ⁡ x − sinh 2 ⁡ x = 1 {\displaystyle \cosh ^{2}x-\sinh ^{2}x=1}

which is analogous to the Pythagorean trigonometric identity.

One also has sech 2 ⁡ x = 1 − tanh 2 ⁡ x csch 2 ⁡ x = coth 2 ⁡ x − 1 {\displaystyle {\begin{aligned}\operatorname {sech} ^{2}x&=1-\tanh ^{2}x\\\operatorname {csch} ^{2}x&=\coth ^{2}x-1\end{aligned}}}

for the other functions.

Sums of arguments

sinh ⁡ ( x + y ) = sinh ⁡ x cosh ⁡ y + cosh ⁡ x sinh ⁡ y cosh ⁡ ( x + y ) = cosh ⁡ x cosh ⁡ y + sinh ⁡ x sinh ⁡ y tanh ⁡ ( x + y ) = tanh ⁡ x + tanh ⁡ y 1 + tanh ⁡ x tanh ⁡ y {\displaystyle {\begin{aligned}\sinh(x+y)&=\sinh x\cosh y+\cosh x\sinh y\\\cosh(x+y)&=\cosh x\cosh y+\sinh x\sinh y\\\tanh(x+y)&={\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}\\\end{aligned}}} particularly cosh ⁡ ( 2 x ) = sinh 2 ⁡ x + cosh 2 ⁡ x = 2 sinh 2 ⁡ x + 1 = 2 cosh 2 ⁡ x − 1 sinh ⁡ ( 2 x ) = 2 sinh ⁡ x cosh ⁡ x tanh ⁡ ( 2 x ) = 2 tanh ⁡ x 1 + tanh 2 ⁡ x {\displaystyle {\begin{aligned}\cosh(2x)&=\sinh ^{2}{x}+\cosh ^{2}{x}=2\sinh ^{2}x+1=2\cosh ^{2}x-1\\\sinh(2x)&=2\sinh x\cosh x\\\tanh(2x)&={\frac {2\tanh x}{1+\tanh ^{2}x}}\\\end{aligned}}}

Also: sinh ⁡ x + sinh ⁡ y = 2 sinh ⁡ ( x + y 2 ) cosh ⁡ ( x − y 2 ) cosh ⁡ x + cosh ⁡ y = 2 cosh ⁡ ( x + y 2 ) cosh ⁡ ( x − y 2 ) {\displaystyle {\begin{aligned}\sinh x+\sinh y&=2\sinh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\cosh x+\cosh y&=2\cosh \left({\frac {x+y}{2}}\right)\cosh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}

Subtraction formulas

sinh ⁡ ( x − y ) = sinh ⁡ x cosh ⁡ y − cosh ⁡ x sinh ⁡ y cosh ⁡ ( x − y ) = cosh ⁡ x cosh ⁡ y − sinh ⁡ x sinh ⁡ y tanh ⁡ ( x − y ) = tanh ⁡ x − tanh ⁡ y 1 − tanh ⁡ x tanh ⁡ y {\displaystyle {\begin{aligned}\sinh(x-y)&=\sinh x\cosh y-\cosh x\sinh y\\\cosh(x-y)&=\cosh x\cosh y-\sinh x\sinh y\\\tanh(x-y)&={\frac {\tanh x-\tanh y}{1-\tanh x\tanh y}}\\\end{aligned}}}

Also:35 sinh ⁡ x − sinh ⁡ y = 2 cosh ⁡ ( x + y 2 ) sinh ⁡ ( x − y 2 ) cosh ⁡ x − cosh ⁡ y = 2 sinh ⁡ ( x + y 2 ) sinh ⁡ ( x − y 2 ) {\displaystyle {\begin{aligned}\sinh x-\sinh y&=2\cosh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\cosh x-\cosh y&=2\sinh \left({\frac {x+y}{2}}\right)\sinh \left({\frac {x-y}{2}}\right)\\\end{aligned}}}

Half argument formulas

sinh ⁡ ( x 2 ) = sinh ⁡ x 2 ( cosh ⁡ x + 1 ) = sgn ⁡ x cosh ⁡ x − 1 2 cosh ⁡ ( x 2 ) = cosh ⁡ x + 1 2 tanh ⁡ ( x 2 ) = sinh ⁡ x cosh ⁡ x + 1 = sgn ⁡ x cosh ⁡ x − 1 cosh ⁡ x + 1 = e x − 1 e x + 1 {\displaystyle {\begin{aligned}\sinh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\sqrt {2(\cosh x+1)}}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{2}}}\\[6px]\cosh \left({\frac {x}{2}}\right)&={\sqrt {\frac {\cosh x+1}{2}}}\\[6px]\tanh \left({\frac {x}{2}}\right)&={\frac {\sinh x}{\cosh x+1}}&&=\operatorname {sgn} x\,{\sqrt {\frac {\cosh x-1}{\cosh x+1}}}={\frac {e^{x}-1}{e^{x}+1}}\end{aligned}}}

where sgn is the sign function.

If x ≠ 0, then36

tanh ⁡ ( x 2 ) = cosh ⁡ x − 1 sinh ⁡ x = coth ⁡ x − csch ⁡ x {\displaystyle \tanh \left({\frac {x}{2}}\right)={\frac {\cosh x-1}{\sinh x}}=\coth x-\operatorname {csch} x}

Square formulas

sinh 2 ⁡ x = 1 2 ( cosh ⁡ 2 x − 1 ) cosh 2 ⁡ x = 1 2 ( cosh ⁡ 2 x + 1 ) {\displaystyle {\begin{aligned}\sinh ^{2}x&={\tfrac {1}{2}}(\cosh 2x-1)\\\cosh ^{2}x&={\tfrac {1}{2}}(\cosh 2x+1)\end{aligned}}}

Inequalities

The following inequality is useful in statistics:37 cosh ⁡ ( t ) ≤ e t 2 / 2 . {\displaystyle \operatorname {cosh} (t)\leq e^{t^{2}/2}.}

It can be proved by comparing the Taylor series of the two functions term by term.

Inverse functions as logarithms

Main article: Inverse hyperbolic function

arsinh ⁡ ( x ) = ln ⁡ ( x + x 2 + 1 ) arcosh ⁡ ( x ) = ln ⁡ ( x + x 2 − 1 ) x ≥ 1 artanh ⁡ ( x ) = 1 2 ln ⁡ ( 1 + x 1 − x ) | x | < 1 arcoth ⁡ ( x ) = 1 2 ln ⁡ ( x + 1 x − 1 ) | x | > 1 arsech ⁡ ( x ) = ln ⁡ ( 1 x + 1 x 2 − 1 ) = ln ⁡ ( 1 + 1 − x 2 x ) 0 < x ≤ 1 arcsch ⁡ ( x ) = ln ⁡ ( 1 x + 1 x 2 + 1 ) x ≠ 0 {\displaystyle {\begin{aligned}\operatorname {arsinh} (x)&=\ln \left(x+{\sqrt {x^{2}+1}}\right)\\\operatorname {arcosh} (x)&=\ln \left(x+{\sqrt {x^{2}-1}}\right)&&x\geq 1\\\operatorname {artanh} (x)&={\frac {1}{2}}\ln \left({\frac {1+x}{1-x}}\right)&&|x|<1\\\operatorname {arcoth} (x)&={\frac {1}{2}}\ln \left({\frac {x+1}{x-1}}\right)&&|x|>1\\\operatorname {arsech} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}-1}}\right)=\ln \left({\frac {1+{\sqrt {1-x^{2}}}}{x}}\right)&&0<x\leq 1\\\operatorname {arcsch} (x)&=\ln \left({\frac {1}{x}}+{\sqrt {{\frac {1}{x^{2}}}+1}}\right)&&x\neq 0\end{aligned}}}

Derivatives

d d x sinh ⁡ x = cosh ⁡ x d d x cosh ⁡ x = sinh ⁡ x d d x tanh ⁡ x = 1 − tanh 2 ⁡ x = sech 2 ⁡ x = 1 cosh 2 ⁡ x d d x coth ⁡ x = 1 − coth 2 ⁡ x = − csch 2 ⁡ x = − 1 sinh 2 ⁡ x x ≠ 0 d d x sech ⁡ x = − tanh ⁡ x sech ⁡ x d d x csch ⁡ x = − coth ⁡ x csch ⁡ x x ≠ 0 {\displaystyle {\begin{aligned}{\frac {d}{dx}}\sinh x&=\cosh x\\{\frac {d}{dx}}\cosh x&=\sinh x\\{\frac {d}{dx}}\tanh x&=1-\tanh ^{2}x=\operatorname {sech} ^{2}x={\frac {1}{\cosh ^{2}x}}\\{\frac {d}{dx}}\coth x&=1-\coth ^{2}x=-\operatorname {csch} ^{2}x=-{\frac {1}{\sinh ^{2}x}}&&x\neq 0\\{\frac {d}{dx}}\operatorname {sech} x&=-\tanh x\operatorname {sech} x\\{\frac {d}{dx}}\operatorname {csch} x&=-\coth x\operatorname {csch} x&&x\neq 0\end{aligned}}} d d x arsinh ⁡ x = 1 x 2 + 1 d d x arcosh ⁡ x = 1 x 2 − 1 1 < x d d x artanh ⁡ x = 1 1 − x 2 | x | < 1 d d x arcoth ⁡ x = 1 1 − x 2 1 < | x | d d x arsech ⁡ x = − 1 x 1 − x 2 0 < x < 1 d d x arcsch ⁡ x = − 1 | x | 1 + x 2 x ≠ 0 {\displaystyle {\begin{aligned}{\frac {d}{dx}}\operatorname {arsinh} x&={\frac {1}{\sqrt {x^{2}+1}}}\\{\frac {d}{dx}}\operatorname {arcosh} x&={\frac {1}{\sqrt {x^{2}-1}}}&&1<x\\{\frac {d}{dx}}\operatorname {artanh} x&={\frac {1}{1-x^{2}}}&&|x|<1\\{\frac {d}{dx}}\operatorname {arcoth} x&={\frac {1}{1-x^{2}}}&&1<|x|\\{\frac {d}{dx}}\operatorname {arsech} x&=-{\frac {1}{x{\sqrt {1-x^{2}}}}}&&0<x<1\\{\frac {d}{dx}}\operatorname {arcsch} x&=-{\frac {1}{|x|{\sqrt {1+x^{2}}}}}&&x\neq 0\end{aligned}}}

Second derivatives

Each of the functions sinh and cosh is equal to its second derivative, that is: d 2 d x 2 sinh ⁡ x = sinh ⁡ x {\displaystyle {\frac {d^{2}}{dx^{2}}}\sinh x=\sinh x} d 2 d x 2 cosh ⁡ x = cosh ⁡ x . {\displaystyle {\frac {d^{2}}{dx^{2}}}\cosh x=\cosh x\,.}

All functions with this property are linear combinations of sinh and cosh, in particular the exponential functions e x {\displaystyle e^{x}} and e − x {\displaystyle e^{-x}} .38

Standard integrals

For a full list, see list of integrals of hyperbolic functions.

∫ sinh ⁡ ( a x ) d x = a − 1 cosh ⁡ ( a x ) + C ∫ cosh ⁡ ( a x ) d x = a − 1 sinh ⁡ ( a x ) + C ∫ tanh ⁡ ( a x ) d x = a − 1 ln ⁡ ( cosh ⁡ ( a x ) ) + C ∫ coth ⁡ ( a x ) d x = a − 1 ln ⁡ | sinh ⁡ ( a x ) | + C ∫ sech ⁡ ( a x ) d x = a − 1 arctan ⁡ ( sinh ⁡ ( a x ) ) + C ∫ csch ⁡ ( a x ) d x = a − 1 ln ⁡ | tanh ⁡ ( a x 2 ) | + C = a − 1 ln ⁡ | coth ⁡ ( a x ) − csch ⁡ ( a x ) | + C = − a − 1 arcoth ⁡ ( cosh ⁡ ( a x ) ) + C {\displaystyle {\begin{aligned}\int \sinh(ax)\,dx&=a^{-1}\cosh(ax)+C\\\int \cosh(ax)\,dx&=a^{-1}\sinh(ax)+C\\\int \tanh(ax)\,dx&=a^{-1}\ln(\cosh(ax))+C\\\int \coth(ax)\,dx&=a^{-1}\ln \left|\sinh(ax)\right|+C\\\int \operatorname {sech} (ax)\,dx&=a^{-1}\arctan(\sinh(ax))+C\\\int \operatorname {csch} (ax)\,dx&=a^{-1}\ln \left|\tanh \left({\frac {ax}{2}}\right)\right|+C=a^{-1}\ln \left|\coth \left(ax\right)-\operatorname {csch} \left(ax\right)\right|+C=-a^{-1}\operatorname {arcoth} \left(\cosh \left(ax\right)\right)+C\end{aligned}}}

The following integrals can be proved using hyperbolic substitution: ∫ 1 a 2 + u 2 d u = arsinh ⁡ ( u a ) + C ∫ 1 u 2 − a 2 d u = sgn ⁡ u arcosh ⁡ | u a | + C ∫ 1 a 2 − u 2 d u = a − 1 artanh ⁡ ( u a ) + C u 2 < a 2 ∫ 1 a 2 − u 2 d u = a − 1 arcoth ⁡ ( u a ) + C u 2 > a 2 ∫ 1 u a 2 − u 2 d u = − a − 1 arsech ⁡ | u a | + C ∫ 1 u a 2 + u 2 d u = − a − 1 arcsch ⁡ | u a | + C {\displaystyle {\begin{aligned}\int {{\frac {1}{\sqrt {a^{2}+u^{2}}}}\,du}&=\operatorname {arsinh} \left({\frac {u}{a}}\right)+C\\\int {{\frac {1}{\sqrt {u^{2}-a^{2}}}}\,du}&=\operatorname {sgn} {u}\operatorname {arcosh} \left|{\frac {u}{a}}\right|+C\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {artanh} \left({\frac {u}{a}}\right)+C&&u^{2}<a^{2}\\\int {\frac {1}{a^{2}-u^{2}}}\,du&=a^{-1}\operatorname {arcoth} \left({\frac {u}{a}}\right)+C&&u^{2}>a^{2}\\\int {{\frac {1}{u{\sqrt {a^{2}-u^{2}}}}}\,du}&=-a^{-1}\operatorname {arsech} \left|{\frac {u}{a}}\right|+C\\\int {{\frac {1}{u{\sqrt {a^{2}+u^{2}}}}}\,du}&=-a^{-1}\operatorname {arcsch} \left|{\frac {u}{a}}\right|+C\end{aligned}}}

where C is the constant of integration.

Taylor series expressions

It is possible to express explicitly the Taylor series at zero (or the Laurent series, if the function is not defined at zero) of the above functions.

sinh ⁡ x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}} This series is convergent for every complex value of x. Since the function sinh x is odd, only odd exponents for x occur in its Taylor series.

cosh ⁡ x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ = ∑ n = 0 ∞ x 2 n ( 2 n ) ! {\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}} This series is convergent for every complex value of x. Since the function cosh x is even, only even exponents for x occur in its Taylor series.

The sum of the sinh and cosh series is the infinite series expression of the exponential function.

The following series are followed by a description of a subset of their domain of convergence, where the series is convergent and its sum equals the function. tanh ⁡ x = x − x 3 3 + 2 x 5 15 − 17 x 7 315 + ⋯ = ∑ n = 1 ∞ 2 2 n ( 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! , | x | < π 2 coth ⁡ x = x − 1 + x 3 − x 3 45 + 2 x 5 945 + ⋯ = ∑ n = 0 ∞ 2 2 n B 2 n x 2 n − 1 ( 2 n ) ! , 0 < | x | < π sech ⁡ x = 1 − x 2 2 + 5 x 4 24 − 61 x 6 720 + ⋯ = ∑ n = 0 ∞ E 2 n x 2 n ( 2 n ) ! , | x | < π 2 csch ⁡ x = x − 1 − x 6 + 7 x 3 360 − 31 x 5 15120 + ⋯ = ∑ n = 0 ∞ 2 ( 1 − 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! , 0 < | x | < π {\displaystyle {\begin{aligned}\tanh x&=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\coth x&=x^{-1}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots =\sum _{n=0}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \\\operatorname {sech} x&=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\qquad \left|x\right|<{\frac {\pi }{2}}\\\operatorname {csch} x&=x^{-1}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots =\sum _{n=0}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},\qquad 0<\left|x\right|<\pi \end{aligned}}}

where:

Infinite products and continued fractions

The following expansions are valid in the whole complex plane:

sinh ⁡ x = x ∏ n = 1 ∞ ( 1 + x 2 n 2 π 2 ) = x 1 − x 2 2 ⋅ 3 + x 2 − 2 ⋅ 3 x 2 4 ⋅ 5 + x 2 − 4 ⋅ 5 x 2 6 ⋅ 7 + x 2 − ⋱ {\displaystyle \sinh x=x\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{n^{2}\pi ^{2}}}\right)={\cfrac {x}{1-{\cfrac {x^{2}}{2\cdot 3+x^{2}-{\cfrac {2\cdot 3x^{2}}{4\cdot 5+x^{2}-{\cfrac {4\cdot 5x^{2}}{6\cdot 7+x^{2}-\ddots }}}}}}}}} cosh ⁡ x = ∏ n = 1 ∞ ( 1 + x 2 ( n − 1 / 2 ) 2 π 2 ) = 1 1 − x 2 1 ⋅ 2 + x 2 − 1 ⋅ 2 x 2 3 ⋅ 4 + x 2 − 3 ⋅ 4 x 2 5 ⋅ 6 + x 2 − ⋱ {\displaystyle \cosh x=\prod _{n=1}^{\infty }\left(1+{\frac {x^{2}}{(n-1/2)^{2}\pi ^{2}}}\right)={\cfrac {1}{1-{\cfrac {x^{2}}{1\cdot 2+x^{2}-{\cfrac {1\cdot 2x^{2}}{3\cdot 4+x^{2}-{\cfrac {3\cdot 4x^{2}}{5\cdot 6+x^{2}-\ddots }}}}}}}}} tanh ⁡ x = 1 1 x + 1 3 x + 1 5 x + 1 7 x + ⋱ {\displaystyle \tanh x={\cfrac {1}{{\cfrac {1}{x}}+{\cfrac {1}{{\cfrac {3}{x}}+{\cfrac {1}{{\cfrac {5}{x}}+{\cfrac {1}{{\cfrac {7}{x}}+\ddots }}}}}}}}}

Comparison with circular functions

The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

Since the area of a circular sector with radius r and angle u (in radians) is r2u/2, it will be equal to u when r = √2. In the diagram, such a circle is tangent to the hyperbola xy = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red regions together depict a hyperbolic sector with area corresponding to hyperbolic angle magnitude.

The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √2 times the circular and hyperbolic functions.

The hyperbolic angle is an invariant measure with respect to the squeeze mapping, just as the circular angle is invariant under rotation.39

The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers.

The graph of the function a cosh(x/a) is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.

Relationship to the exponential function

The decomposition of the exponential function in its even and odd parts gives the identities e x = cosh ⁡ x + sinh ⁡ x , {\displaystyle e^{x}=\cosh x+\sinh x,} and e − x = cosh ⁡ x − sinh ⁡ x . {\displaystyle e^{-x}=\cosh x-\sinh x.} Combined with Euler's formula e i x = cos ⁡ x + i sin ⁡ x , {\displaystyle e^{ix}=\cos x+i\sin x,} this gives e x + i y = ( cosh ⁡ x + sinh ⁡ x ) ( cos ⁡ y + i sin ⁡ y ) {\displaystyle e^{x+iy}=(\cosh x+\sinh x)(\cos y+i\sin y)} for the general complex exponential function.

Additionally, e x = 1 + tanh ⁡ x 1 − tanh ⁡ x = 1 + tanh ⁡ x 2 1 − tanh ⁡ x 2 {\displaystyle e^{x}={\sqrt {\frac {1+\tanh x}{1-\tanh x}}}={\frac {1+\tanh {\frac {x}{2}}}{1-\tanh {\frac {x}{2}}}}}

Hyperbolic functions for complex numbers

Hyperbolic functions in the complex plane
sinh ⁡ ( z ) {\displaystyle \sinh(z)} cosh ⁡ ( z ) {\displaystyle \cosh(z)} tanh ⁡ ( z ) {\displaystyle \tanh(z)} coth ⁡ ( z ) {\displaystyle \coth(z)} sech ⁡ ( z ) {\displaystyle \operatorname {sech} (z)} csch ⁡ ( z ) {\displaystyle \operatorname {csch} (z)}

Since the exponential function can be defined for any complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions sinh z and cosh z are then holomorphic.

Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers: e i x = cos ⁡ x + i sin ⁡ x e − i x = cos ⁡ x − i sin ⁡ x {\displaystyle {\begin{aligned}e^{ix}&=\cos x+i\sin x\\e^{-ix}&=\cos x-i\sin x\end{aligned}}} so: cosh ⁡ ( i x ) = 1 2 ( e i x + e − i x ) = cos ⁡ x sinh ⁡ ( i x ) = 1 2 ( e i x − e − i x ) = i sin ⁡ x cosh ⁡ ( x + i y ) = cosh ⁡ ( x ) cos ⁡ ( y ) + i sinh ⁡ ( x ) sin ⁡ ( y ) sinh ⁡ ( x + i y ) = sinh ⁡ ( x ) cos ⁡ ( y ) + i cosh ⁡ ( x ) sin ⁡ ( y ) tanh ⁡ ( i x ) = i tan ⁡ x cosh ⁡ x = cos ⁡ ( i x ) sinh ⁡ x = − i sin ⁡ ( i x ) tanh ⁡ x = − i tan ⁡ ( i x ) {\displaystyle {\begin{aligned}\cosh(ix)&={\frac {1}{2}}\left(e^{ix}+e^{-ix}\right)=\cos x\\\sinh(ix)&={\frac {1}{2}}\left(e^{ix}-e^{-ix}\right)=i\sin x\\\cosh(x+iy)&=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\\\sinh(x+iy)&=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\\\tanh(ix)&=i\tan x\\\cosh x&=\cos(ix)\\\sinh x&=-i\sin(ix)\\\tanh x&=-i\tan(ix)\end{aligned}}}

Thus, hyperbolic functions are periodic with respect to the imaginary component, with period 2 π i {\displaystyle 2\pi i} ( π i {\displaystyle \pi i} for hyperbolic tangent and cotangent).

See also

Wikimedia Commons has media related to Hyperbolic functions.

References

  1. Weisstein, Eric W. "Hyperbolic Functions". mathworld.wolfram.com. Retrieved 2020-08-29. /wiki/Eric_W._Weisstein

  2. (1999) Collins Concise Dictionary, 4th edition, HarperCollins, Glasgow, ISBN 0 00 472257 4, p. 1386 /wiki/ISBN_(identifier)

  3. Collins Concise Dictionary, p. 328

  4. "Hyperbolic Functions". www.mathsisfun.com. Retrieved 2020-08-29. https://www.mathsisfun.com/sets/function-hyperbolic.html

  5. Collins Concise Dictionary, p. 1520

  6. Collins Concise Dictionary, p. 329

  7. tanh http://www.mathcentre.ac.uk/resources/workbooks/mathcentre/hyperbolicfunctions.pdf

  8. Collins Concise Dictionary, p. 1340

  9. Collins Concise Dictionary, p. 328

  10. Woodhouse, N. M. J. (2003), Special Relativity, London: Springer, p. 71, ISBN 978-1-85233-426-0 978-1-85233-426-0

  11. Abramowitz, Milton; Stegun, Irene A., eds. (1972), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications, ISBN 978-0-486-61272-0 978-0-486-61272-0

  12. Some examples of using arcsinh found in Google Books. https://www.google.com/books?q=arcsinh+-library

  13. Niven, Ivan (1985). Irrational Numbers. Vol. 11. Mathematical Association of America. ISBN 9780883850381. JSTOR 10.4169/j.ctt5hh8zn. 9780883850381

  14. George F. Becker; C. E. Van Orstrand (1909). Hyperbolic Functions. Universal Digital Library. The Smithsonian Institution. https://archive.org/details/hyperbolicfuncti027682mbp/page/n49/mode/2up?q=mercator

  15. McMahon, James (1896). Hyperbolic Functions. Osmania University, Digital Library Of India. John Wiley And Sons. https://archive.org/details/hyperbolicfuncti031883mbp/page/n75/mode/2up

  16. McMahon, James (1896). Hyperbolic Functions. Osmania University, Digital Library Of India. John Wiley And Sons. https://archive.org/details/hyperbolicfuncti031883mbp/page/n75/mode/2up

  17. McMahon, James (1896). Hyperbolic Functions. Osmania University, Digital Library Of India. John Wiley And Sons. https://archive.org/details/hyperbolicfuncti031883mbp/page/n75/mode/2up

  18. George F. Becker; C. E. Van Orstrand (1909). Hyperbolic Functions. Universal Digital Library. The Smithsonian Institution. https://archive.org/details/hyperbolicfuncti027682mbp/page/n49/mode/2up?q=mercator

  19. Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.

  20. McMahon, James (1896). Hyperbolic Functions. Osmania University, Digital Library Of India. John Wiley And Sons. https://archive.org/details/hyperbolicfuncti031883mbp/page/n75/mode/2up

  21. Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.

  22. McMahon, James (1896). Hyperbolic Functions. Osmania University, Digital Library Of India. John Wiley And Sons. https://archive.org/details/hyperbolicfuncti031883mbp/page/n75/mode/2up

  23. McMahon, James (1896). Hyperbolic Functions. Osmania University, Digital Library Of India. John Wiley And Sons. https://archive.org/details/hyperbolicfuncti031883mbp/page/n75/mode/2up

  24. Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.

  25. Bradley, Robert E.; D'Antonio, Lawrence A.; Sandifer, Charles Edward. Euler at 300: an appreciation. Mathematical Association of America, 2007. Page 100.

  26. Becker, Georg F. Hyperbolic functions. Read Books, 1931. Page xlviii.

  27. Weisstein, Eric W. "Hyperbolic Functions". mathworld.wolfram.com. Retrieved 2020-08-29. /wiki/Eric_W._Weisstein

  28. "Hyperbolic Functions". www.mathsisfun.com. Retrieved 2020-08-29. https://www.mathsisfun.com/sets/function-hyperbolic.html

  29. Weisstein, Eric W. "Hyperbolic Functions". mathworld.wolfram.com. Retrieved 2020-08-29. /wiki/Eric_W._Weisstein

  30. Weisstein, Eric W. "Hyperbolic Functions". mathworld.wolfram.com. Retrieved 2020-08-29. /wiki/Eric_W._Weisstein

  31. N.P., Bali (2005). Golden Integral Calculus. Firewall Media. p. 472. ISBN 81-7008-169-6. 81-7008-169-6

  32. Steeb, Willi-Hans (2005). Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (3rd ed.). World Scientific Publishing Company. p. 281. ISBN 978-981-310-648-2. Extract of page 281 (using lambda=1) 978-981-310-648-2

  33. Oldham, Keith B.; Myland, Jan; Spanier, Jerome (2010). An Atlas of Functions: with Equator, the Atlas Function Calculator (2nd, illustrated ed.). Springer Science & Business Media. p. 290. ISBN 978-0-387-48807-3. Extract of page 290 978-0-387-48807-3

  34. Osborn, G. (July 1902). "Mnemonic for hyperbolic formulae". The Mathematical Gazette. 2 (34): 189. doi:10.2307/3602492. JSTOR 3602492. S2CID 125866575. https://zenodo.org/record/1449741

  35. Martin, George E. (1986). The foundations of geometry and the non-Euclidean plane (1st corr. ed.). New York: Springer-Verlag. p. 416. ISBN 3-540-90694-0. 3-540-90694-0

  36. "Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x)". StackExchange (mathematics). Retrieved 24 January 2016. https://math.stackexchange.com/q/1565753

  37. Audibert, Jean-Yves (2009). "Fast learning rates in statistical inference through aggregation". The Annals of Statistics. p. 1627. [1] https://projecteuclid.org/download/pdfview_1/euclid.aos/1245332827

  38. Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., eds. (2010), "Hyperbolic functions", NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248. 978-0-521-19225-5

  39. Haskell, Mellen W., "On the introduction of the notion of hyperbolic functions", Bulletin of the American Mathematical Society 1:6:155–9, full text /wiki/Mellen_W._Haskell