If C {\displaystyle C} is a cone in a TVS X {\displaystyle X} then for any subset S ⊆ X {\displaystyle S\subseteq X} let [ S ] C := ( S + C ) ∩ ( S − C ) {\displaystyle [S]_{C}:=\left(S+C\right)\cap \left(S-C\right)} be the C {\displaystyle C} -saturated hull of S ⊆ X {\displaystyle S\subseteq X} and for any collection S {\displaystyle {\mathcal {S}}} of subsets of X {\displaystyle X} let [ S ] C := { [ S ] C : S ∈ S } . {\displaystyle \left[{\mathcal {S}}\right]_{C}:=\left\{\left[S\right]_{C}:S\in {\mathcal {S}}\right\}.} If C {\displaystyle C} is a cone in a TVS X {\displaystyle X} then C {\displaystyle C} is normal if U = [ U ] C , {\displaystyle {\mathcal {U}}=\left[{\mathcal {U}}\right]_{C},} where U {\displaystyle {\mathcal {U}}} is the neighborhood filter at the origin.2
If T {\displaystyle {\mathcal {T}}} is a collection of subsets of X {\displaystyle X} and if F {\displaystyle {\mathcal {F}}} is a subset of T {\displaystyle {\mathcal {T}}} then F {\displaystyle {\mathcal {F}}} is a fundamental subfamily of T {\displaystyle {\mathcal {T}}} if every T ∈ T {\displaystyle T\in {\mathcal {T}}} is contained as a subset of some element of F . {\displaystyle {\mathcal {F}}.} If G {\displaystyle {\mathcal {G}}} is a family of subsets of a TVS X {\displaystyle X} then a cone C {\displaystyle C} in X {\displaystyle X} is called a G {\displaystyle {\mathcal {G}}} -cone if { [ G ] C ¯ : G ∈ G } {\displaystyle \left\{{\overline {\left[G\right]_{C}}}:G\in {\mathcal {G}}\right\}} is a fundamental subfamily of G {\displaystyle {\mathcal {G}}} and C {\displaystyle C} is a strict G {\displaystyle {\mathcal {G}}} -cone if { [ G ] C : G ∈ G } {\displaystyle \left\{\left[G\right]_{C}:G\in {\mathcal {G}}\right\}} is a fundamental subfamily of G . {\displaystyle {\mathcal {G}}.} 3 Let B {\displaystyle {\mathcal {B}}} denote the family of all bounded subsets of X . {\displaystyle X.}
If C {\displaystyle C} is a cone in a TVS X {\displaystyle X} (over the real or complex numbers), then the following are equivalent:4
and if X {\displaystyle X} is a vector space over the reals then we may add to this list:5
and if X {\displaystyle X} is a locally convex space and if the dual cone of C {\displaystyle C} is denoted by X ′ {\displaystyle X^{\prime }} then we may add to this list:6
and if X {\displaystyle X} is an infrabarreled locally convex space and if B ′ {\displaystyle {\mathcal {B}}^{\prime }} is the family of all strongly bounded subsets of X ′ {\displaystyle X^{\prime }} then we may add to this list:7
and if X {\displaystyle X} is an ordered locally convex TVS over the reals whose positive cone is C , {\displaystyle C,} then we may add to this list:
If X {\displaystyle X} is a locally convex TVS, C {\displaystyle C} is a cone in X {\displaystyle X} with dual cone C ′ ⊆ X ′ , {\displaystyle C^{\prime }\subseteq X^{\prime },} and G {\displaystyle {\mathcal {G}}} is a saturated family of weakly bounded subsets of X ′ , {\displaystyle X^{\prime },} then9
If X {\displaystyle X} is a Banach space, C {\displaystyle C} is a closed cone in X , {\displaystyle X,} , and B ′ {\displaystyle {\mathcal {B}}^{\prime }} is the family of all bounded subsets of X b ′ {\displaystyle X_{b}^{\prime }} then the dual cone C ′ {\displaystyle C^{\prime }} is normal in X b ′ {\displaystyle X_{b}^{\prime }} if and only if C {\displaystyle C} is a strict B {\displaystyle {\mathcal {B}}} -cone.10
If X {\displaystyle X} is a Banach space and C {\displaystyle C} is a cone in X {\displaystyle X} then the following are equivalent:11
Suppose L {\displaystyle L} is an ordered topological vector space. That is, L {\displaystyle L} is a topological vector space, and we define x ≥ y {\displaystyle x\geq y} whenever x − y {\displaystyle x-y} lies in the cone L + {\displaystyle L_{+}} . The following statements are equivalent:12
If the topology on X {\displaystyle X} is locally convex then the closure of a normal cone is a normal cone.17
Suppose that { X α : α ∈ A } {\displaystyle \left\{X_{\alpha }:\alpha \in A\right\}} is a family of locally convex TVSs and that C α {\displaystyle C_{\alpha }} is a cone in X α . {\displaystyle X_{\alpha }.} If X := ⨁ α X α {\displaystyle X:=\bigoplus _{\alpha }X_{\alpha }} is the locally convex direct sum then the cone C := ⨁ α C α {\displaystyle C:=\bigoplus _{\alpha }C_{\alpha }} is a normal cone in X {\displaystyle X} if and only if each X α {\displaystyle X_{\alpha }} is normal in X α . {\displaystyle X_{\alpha }.} 18
If X {\displaystyle X} is a locally convex space then the closure of a normal cone is a normal cone.19
If C {\displaystyle C} is a cone in a locally convex TVS X {\displaystyle X} and if C ′ {\displaystyle C^{\prime }} is the dual cone of C , {\displaystyle C,} then X ′ = C ′ − C ′ {\displaystyle X^{\prime }=C^{\prime }-C^{\prime }} if and only if C {\displaystyle C} is weakly normal.20 Every normal cone in a locally convex TVS is weakly normal.21 In a normed space, a cone is normal if and only if it is weakly normal.22
If X {\displaystyle X} and Y {\displaystyle Y} are ordered locally convex TVSs and if G {\displaystyle {\mathcal {G}}} is a family of bounded subsets of X , {\displaystyle X,} then if the positive cone of X {\displaystyle X} is a G {\displaystyle {\mathcal {G}}} -cone in X {\displaystyle X} and if the positive cone of Y {\displaystyle Y} is a normal cone in Y {\displaystyle Y} then the positive cone of L G ( X ; Y ) {\displaystyle L_{\mathcal {G}}(X;Y)} is a normal cone for the G {\displaystyle {\mathcal {G}}} -topology on L ( X ; Y ) . {\displaystyle L(X;Y).} 23
Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135 ↩
Schaefer & Wolff 1999, pp. 222–225. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135 ↩
Aliprantis, Charalambos D. (2007). Cones and duality. Rabee Tourky. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-4146-4. OCLC 87808043. 978-0-8218-4146-4 ↩
Schaefer & Wolff 1999, pp. 225–229. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135 ↩