Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Normal cone (functional analysis)

In mathematics, specifically in order theory and functional analysis, if C {\displaystyle C} is a cone at the origin in a topological vector space X {\displaystyle X} such that 0 ∈ C {\displaystyle 0\in C} and if U {\displaystyle {\mathcal {U}}} is the neighborhood filter at the origin, then C {\displaystyle C} is called normal if U = [ U ] C , {\displaystyle {\mathcal {U}}=\left[{\mathcal {U}}\right]_{C},} where [ U ] C := { [ U ] C : U ∈ U } {\displaystyle \left[{\mathcal {U}}\right]_{C}:=\left\{[U]_{C}:U\in {\mathcal {U}}\right\}} and where for any subset S ⊆ X , {\displaystyle S\subseteq X,} [ S ] C := ( S + C ) ∩ ( S − C ) {\displaystyle [S]_{C}:=(S+C)\cap (S-C)} is the C {\displaystyle C} -saturatation of S . {\displaystyle S.}

Normal cones play an important role in the theory of ordered topological vector spaces and topological vector lattices.

We don't have any images related to Normal cone (functional analysis) yet.
We don't have any YouTube videos related to Normal cone (functional analysis) yet.
We don't have any PDF documents related to Normal cone (functional analysis) yet.
We don't have any Books related to Normal cone (functional analysis) yet.
We don't have any archived web articles related to Normal cone (functional analysis) yet.

Characterizations

If C {\displaystyle C} is a cone in a TVS X {\displaystyle X} then for any subset S ⊆ X {\displaystyle S\subseteq X} let [ S ] C := ( S + C ) ∩ ( S − C ) {\displaystyle [S]_{C}:=\left(S+C\right)\cap \left(S-C\right)} be the C {\displaystyle C} -saturated hull of S ⊆ X {\displaystyle S\subseteq X} and for any collection S {\displaystyle {\mathcal {S}}} of subsets of X {\displaystyle X} let [ S ] C := { [ S ] C : S ∈ S } . {\displaystyle \left[{\mathcal {S}}\right]_{C}:=\left\{\left[S\right]_{C}:S\in {\mathcal {S}}\right\}.} If C {\displaystyle C} is a cone in a TVS X {\displaystyle X} then C {\displaystyle C} is normal if U = [ U ] C , {\displaystyle {\mathcal {U}}=\left[{\mathcal {U}}\right]_{C},} where U {\displaystyle {\mathcal {U}}} is the neighborhood filter at the origin.2

If T {\displaystyle {\mathcal {T}}} is a collection of subsets of X {\displaystyle X} and if F {\displaystyle {\mathcal {F}}} is a subset of T {\displaystyle {\mathcal {T}}} then F {\displaystyle {\mathcal {F}}} is a fundamental subfamily of T {\displaystyle {\mathcal {T}}} if every T ∈ T {\displaystyle T\in {\mathcal {T}}} is contained as a subset of some element of F . {\displaystyle {\mathcal {F}}.} If G {\displaystyle {\mathcal {G}}} is a family of subsets of a TVS X {\displaystyle X} then a cone C {\displaystyle C} in X {\displaystyle X} is called a G {\displaystyle {\mathcal {G}}} -cone if { [ G ] C ¯ : G ∈ G } {\displaystyle \left\{{\overline {\left[G\right]_{C}}}:G\in {\mathcal {G}}\right\}} is a fundamental subfamily of G {\displaystyle {\mathcal {G}}} and C {\displaystyle C} is a strict G {\displaystyle {\mathcal {G}}} -cone if { [ G ] C : G ∈ G } {\displaystyle \left\{\left[G\right]_{C}:G\in {\mathcal {G}}\right\}} is a fundamental subfamily of G . {\displaystyle {\mathcal {G}}.} 3 Let B {\displaystyle {\mathcal {B}}} denote the family of all bounded subsets of X . {\displaystyle X.}

If C {\displaystyle C} is a cone in a TVS X {\displaystyle X} (over the real or complex numbers), then the following are equivalent:4

  1. C {\displaystyle C} is a normal cone.
  2. For every filter F {\displaystyle {\mathcal {F}}} in X , {\displaystyle X,} if lim F = 0 {\displaystyle \lim {\mathcal {F}}=0} then lim [ F ] C = 0. {\displaystyle \lim \left[{\mathcal {F}}\right]_{C}=0.}
  3. There exists a neighborhood base G {\displaystyle {\mathcal {G}}} in X {\displaystyle X} such that B ∈ G {\displaystyle B\in {\mathcal {G}}} implies [ B ∩ C ] C ⊆ B . {\displaystyle \left[B\cap C\right]_{C}\subseteq B.}

and if X {\displaystyle X} is a vector space over the reals then we may add to this list:5

  1. There exists a neighborhood base at the origin consisting of convex, balanced, C {\displaystyle C} -saturated sets.
  2. There exists a generating family P {\displaystyle {\mathcal {P}}} of semi-norms on X {\displaystyle X} such that p ( x ) ≤ p ( x + y ) {\displaystyle p(x)\leq p(x+y)} for all x , y ∈ C {\displaystyle x,y\in C} and p ∈ P . {\displaystyle p\in {\mathcal {P}}.}

and if X {\displaystyle X} is a locally convex space and if the dual cone of C {\displaystyle C} is denoted by X ′ {\displaystyle X^{\prime }} then we may add to this list:6

  1. For any equicontinuous subset S ⊆ X ′ , {\displaystyle S\subseteq X^{\prime },} there exists an equicontiuous B ⊆ C ′ {\displaystyle B\subseteq C^{\prime }} such that S ⊆ B − B . {\displaystyle S\subseteq B-B.}
  2. The topology of X {\displaystyle X} is the topology of uniform convergence on the equicontinuous subsets of C ′ . {\displaystyle C^{\prime }.}

and if X {\displaystyle X} is an infrabarreled locally convex space and if B ′ {\displaystyle {\mathcal {B}}^{\prime }} is the family of all strongly bounded subsets of X ′ {\displaystyle X^{\prime }} then we may add to this list:7

  1. The topology of X {\displaystyle X} is the topology of uniform convergence on strongly bounded subsets of C ′ . {\displaystyle C^{\prime }.}
  2. C ′ {\displaystyle C^{\prime }} is a B ′ {\displaystyle {\mathcal {B}}^{\prime }} -cone in X ′ . {\displaystyle X^{\prime }.}
    • this means that the family { [ B ′ ] C ¯ : B ′ ∈ B ′ } {\displaystyle \left\{{\overline {\left[B^{\prime }\right]_{C}}}:B^{\prime }\in {\mathcal {B}}^{\prime }\right\}} is a fundamental subfamily of B ′ . {\displaystyle {\mathcal {B}}^{\prime }.}
  3. C ′ {\displaystyle C^{\prime }} is a strict B ′ {\displaystyle {\mathcal {B}}^{\prime }} -cone in X ′ . {\displaystyle X^{\prime }.}
    • this means that the family { [ B ′ ] C : B ′ ∈ B ′ } {\displaystyle \left\{\left[B^{\prime }\right]_{C}:B^{\prime }\in {\mathcal {B}}^{\prime }\right\}} is a fundamental subfamily of B ′ . {\displaystyle {\mathcal {B}}^{\prime }.}

and if X {\displaystyle X} is an ordered locally convex TVS over the reals whose positive cone is C , {\displaystyle C,} then we may add to this list:

  1. there exists a Hausdorff locally compact topological space S {\displaystyle S} such that X {\displaystyle X} is isomorphic (as an ordered TVS) with a subspace of R ( S ) , {\displaystyle R(S),} where R ( S ) {\displaystyle R(S)} is the space of all real-valued continuous functions on X {\displaystyle X} under the topology of compact convergence.8

If X {\displaystyle X} is a locally convex TVS, C {\displaystyle C} is a cone in X {\displaystyle X} with dual cone C ′ ⊆ X ′ , {\displaystyle C^{\prime }\subseteq X^{\prime },} and G {\displaystyle {\mathcal {G}}} is a saturated family of weakly bounded subsets of X ′ , {\displaystyle X^{\prime },} then9

  1. if C ′ {\displaystyle C^{\prime }} is a G {\displaystyle {\mathcal {G}}} -cone then C {\displaystyle C} is a normal cone for the G {\displaystyle {\mathcal {G}}} -topology on X {\displaystyle X} ;
  2. if C {\displaystyle C} is a normal cone for a G {\displaystyle {\mathcal {G}}} -topology on X {\displaystyle X} consistent with ⟨ X , X ′ ⟩ {\displaystyle \left\langle X,X^{\prime }\right\rangle } then C ′ {\displaystyle C^{\prime }} is a strict G {\displaystyle {\mathcal {G}}} -cone in X ′ . {\displaystyle X^{\prime }.}

If X {\displaystyle X} is a Banach space, C {\displaystyle C} is a closed cone in X , {\displaystyle X,} , and B ′ {\displaystyle {\mathcal {B}}^{\prime }} is the family of all bounded subsets of X b ′ {\displaystyle X_{b}^{\prime }} then the dual cone C ′ {\displaystyle C^{\prime }} is normal in X b ′ {\displaystyle X_{b}^{\prime }} if and only if C {\displaystyle C} is a strict B {\displaystyle {\mathcal {B}}} -cone.10

If X {\displaystyle X} is a Banach space and C {\displaystyle C} is a cone in X {\displaystyle X} then the following are equivalent:11

  1. C {\displaystyle C} is a B {\displaystyle {\mathcal {B}}} -cone in X {\displaystyle X} ;
  2. X = C ¯ − C ¯ {\displaystyle X={\overline {C}}-{\overline {C}}} ;
  3. C ¯ {\displaystyle {\overline {C}}} is a strict B {\displaystyle {\mathcal {B}}} -cone in X . {\displaystyle X.}

Ordered topological vector spaces

Suppose L {\displaystyle L} is an ordered topological vector space. That is, L {\displaystyle L} is a topological vector space, and we define x ≥ y {\displaystyle x\geq y} whenever x − y {\displaystyle x-y} lies in the cone L + {\displaystyle L_{+}} . The following statements are equivalent:12

  1. The cone L + {\displaystyle L_{+}} is normal;
  2. The normed space L {\displaystyle L} admits an equivalent monotone norm;
  3. There exists a constant c > 0 {\displaystyle c>0} such that a ≤ x ≤ b {\displaystyle a\leq x\leq b} implies ‖ x ‖ ≤ c max { ‖ a ‖ , ‖ b ‖ } {\displaystyle \lVert x\rVert \leq c\max\{\lVert a\rVert ,\lVert b\rVert \}} ;
  4. The full hull [ U ] = ( U + L + ) ∩ ( U − L + ) {\displaystyle [U]=(U+L_{+})\cap (U-L_{+})} of the closed unit ball U {\displaystyle U} of L {\displaystyle L} is norm bounded;
  5. There is a constant c > 0 {\displaystyle c>0} such that 0 ≤ x ≤ y {\displaystyle 0\leq x\leq y} implies ‖ x ‖ ≤ c ‖ y ‖ {\displaystyle \lVert x\rVert \leq c\lVert y\rVert } .

Properties

  • If X {\displaystyle X} is a Hausdorff TVS then every normal cone in X {\displaystyle X} is a proper cone.13
  • If X {\displaystyle X} is a normable space and if C {\displaystyle C} is a normal cone in X {\displaystyle X} then X ′ = C ′ − C ′ . {\displaystyle X^{\prime }=C^{\prime }-C^{\prime }.} 14
  • Suppose that the positive cone of an ordered locally convex TVS X {\displaystyle X} is weakly normal in X {\displaystyle X} and that Y {\displaystyle Y} is an ordered locally convex TVS with positive cone D . {\displaystyle D.} If Y = D − D {\displaystyle Y=D-D} then H − H {\displaystyle H-H} is dense in L s ( X ; Y ) {\displaystyle L_{s}(X;Y)} where H {\displaystyle H} is the canonical positive cone of L ( X ; Y ) {\displaystyle L(X;Y)} and L s ( X ; Y ) {\displaystyle L_{s}(X;Y)} is the space L ( X ; Y ) {\displaystyle L(X;Y)} with the topology of simple convergence.15
    • If G {\displaystyle {\mathcal {G}}} is a family of bounded subsets of X , {\displaystyle X,} then there are apparently no simple conditions guaranteeing that H {\displaystyle H} is a T {\displaystyle {\mathcal {T}}} -cone in L G ( X ; Y ) , {\displaystyle L_{\mathcal {G}}(X;Y),} even for the most common types of families T {\displaystyle {\mathcal {T}}} of bounded subsets of L G ( X ; Y ) {\displaystyle L_{\mathcal {G}}(X;Y)} (except for very special cases).16

Sufficient conditions

If the topology on X {\displaystyle X} is locally convex then the closure of a normal cone is a normal cone.17

Suppose that { X α : α ∈ A } {\displaystyle \left\{X_{\alpha }:\alpha \in A\right\}} is a family of locally convex TVSs and that C α {\displaystyle C_{\alpha }} is a cone in X α . {\displaystyle X_{\alpha }.} If X := ⨁ α X α {\displaystyle X:=\bigoplus _{\alpha }X_{\alpha }} is the locally convex direct sum then the cone C := ⨁ α C α {\displaystyle C:=\bigoplus _{\alpha }C_{\alpha }} is a normal cone in X {\displaystyle X} if and only if each X α {\displaystyle X_{\alpha }} is normal in X α . {\displaystyle X_{\alpha }.} 18

If X {\displaystyle X} is a locally convex space then the closure of a normal cone is a normal cone.19

If C {\displaystyle C} is a cone in a locally convex TVS X {\displaystyle X} and if C ′ {\displaystyle C^{\prime }} is the dual cone of C , {\displaystyle C,} then X ′ = C ′ − C ′ {\displaystyle X^{\prime }=C^{\prime }-C^{\prime }} if and only if C {\displaystyle C} is weakly normal.20 Every normal cone in a locally convex TVS is weakly normal.21 In a normed space, a cone is normal if and only if it is weakly normal.22

If X {\displaystyle X} and Y {\displaystyle Y} are ordered locally convex TVSs and if G {\displaystyle {\mathcal {G}}} is a family of bounded subsets of X , {\displaystyle X,} then if the positive cone of X {\displaystyle X} is a G {\displaystyle {\mathcal {G}}} -cone in X {\displaystyle X} and if the positive cone of Y {\displaystyle Y} is a normal cone in Y {\displaystyle Y} then the positive cone of L G ( X ; Y ) {\displaystyle L_{\mathcal {G}}(X;Y)} is a normal cone for the G {\displaystyle {\mathcal {G}}} -topology on L ( X ; Y ) . {\displaystyle L(X;Y).} 23

See also

Bibliography

  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.

References

  1. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  2. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  3. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  4. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  5. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  6. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  7. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  8. Schaefer & Wolff 1999, pp. 222–225. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  9. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  10. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  11. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  12. Aliprantis, Charalambos D. (2007). Cones and duality. Rabee Tourky. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-4146-4. OCLC 87808043. 978-0-8218-4146-4

  13. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  14. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  15. Schaefer & Wolff 1999, pp. 225–229. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  16. Schaefer & Wolff 1999, pp. 225–229. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  17. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  18. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  19. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  20. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  21. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  22. Schaefer & Wolff 1999, pp. 215–222. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135

  23. Schaefer & Wolff 1999, pp. 225–229. - Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135. https://search.worldcat.org/oclc/840278135