Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page

The charm quark, charmed quark, or c quark is an elementary particle found in composite subatomic particles called hadrons such as the J/psi meson and the charmed baryons created in particle accelerator collisions. Several bosons, including the W and Z bosons and the Higgs boson, can decay into charm quarks. All charm quarks carry charm, a quantum number. This second-generation particle is the third-most-massive quark, with a mass of 1.27±0.02 GeV/c2 as measured in 2022, and a charge of +⁠2/3⁠ e.

The existence of the charm quark was first predicted by James Bjorken and Sheldon Glashow in 1964, and in 1970, Glashow, John Iliopoulos, and Luciano Maiani showed how its existence would account for experimental and theoretical discrepancies. In 1974, its existence was confirmed through the independent discoveries of the J/psi meson at Brookhaven National Laboratory and the Stanford Linear Accelerator Center. In the next few years, several other charmed particles, including the D meson and the charmed strange mesons, were found.

In the 21st century, a baryon containing two charm quarks has been found. There is recent evidence that intrinsic charm quarks exist in the proton, and the coupling of the charm quark and the Higgs boson has been studied. Recent evidence also indicates CP violation in the decay of the D0 meson, which contains the charm quark.

Related Image Collections Add Image
We don't have any YouTube videos related to Charm quark yet.
We don't have any PDF documents related to Charm quark yet.
We don't have any Books related to Charm quark yet.

Naming

According to Sheldon Glashow, the charm quark received its name because of the "symmetry it brought to the subnuclear world".56 Glashow also justified the name as "a magical device to avert evil", because adding the charm quark would prohibit unwanted and unseen decays in the three-quark theory at the time.7 The charm quark is also called the "charmed quark" in both academic and non-academic contexts.8910 The symbol of the charm quark is "c".11

History

Background

See also: Quark model

In 1961, Murray Gell-Mann introduced the Eightfold Way as a pattern to group baryons and mesons.12 In 1964, Gell-Mann and George Zweig independently proposed that all hadrons are composed of elementary constituents, which Gell-Mann called "quarks".13 Initially, only the up quark, the down quark, and the strange quark were proposed.14 These quarks would produce all of the particles in the Eightfold Way.15 Gell-Mann and Kazuhiko Nishijima had established strangeness, a quantum number, in 1953 to describe processes involving strange particles such as Σ and Λ.16

Theoretical prediction

See also: GIM mechanism and Scientific wager

In 1964, James Bjorken and Sheldon Glashow theorized "charm" as a new quantum number.17 At the time, there were four known leptons—the electron, the muon, and each of their neutrinos—but Gell-Mann initially proposed only three quarks.18 Bjorken and Glashow thus hoped to establish parallels between the leptons and the quarks with their theory.19 According to Glashow, the conjecture came from "aesthetic arguments".20

In 1970, Glashow, John Iliopoulos, and Luciano Maiani proposed a new quark that differed from the three then-known quarks by the charm quantum number.2122 They further predicted the existence of "charmed particles" and offered suggestions on how to experimentally produce them.23 They also suggested the charmed quark could provide a mechanism—the GIM mechanism—to facilitate the unification of the weak and electromagnetic forces.24

At the Conference on Experimental Meson Spectroscopy (EMS) in April 1974, Glashow delivered his paper titled "Charm: An Invention Awaits Discovery". Glashow asserted because neutral currents were likely to exist, a fourth quark was "sorely needed" to explain the rarity of the decays of certain kaons.25 He also made several predictions on the properties of charm quarks.26 He wagered that, by the next EMS conference in 1976:

There are just three possibilities:

  1. Charm is not found, and I eat my hat.
  2. Charm is found by hadron spectroscopers, and we celebrate.
  3. Charm is found by outlanders,27 and you eat your hats.28

In July 1974, at the 17th International Conference on High Energy Physics (ICHEP), Iliopoulos said:

I have won already several bottles of wine by betting for the neutral currents and I am ready to bet now a whole case that if the weak interaction sessions of this Conference were dominated by the discovery of the neutral currents, the entire next Conference will be dominated by the discovery of the charmed particles.29

Applying an argument of naturalness to the kaon mass splitting between the K0L and K0S states, the mass of the charm quark was estimated by Mary K. Gaillard and Benjamin W. Lee in 1974 to be less than 5 GeV/c2.3031

Discovery

Glashow predicted that the down quark of a proton could absorb a W+ and become a charm quark. Then, the proton would be transformed into a charmed baryon before it decayed into several particles, including a lambda baryon. In late May 1974, Robert Palmer and Nicholas P. Samios found an event generating a lambda baryon from their bubble chamber at Brookhaven National Laboratory.32 It took months for Palmer to be convinced the lambda baryon came from a charmed particle.33 When the magnet of the bubble chamber failed in October 1974, they did not encounter the same event.34 The two scientists published their observations in early 1975.3536 Michael Riordan commented that this event was "ambiguous" and "encouraging but not convincing evidence".37

J/psi meson (1974)

Main article: J/psi meson

In 1974, Samuel C. C. Ting was searching for charmed particles at Brookhaven National Laboratory (BNL).38 His team was using an electron-pair detector.39 By the end of August, they found a peak at 3.1 GeV/c2 and the signal's width was less than 5 MeV.40 The team was eventually convinced they had observed a massive particle and named it "J". Ting considered announcing his discovery in October 1974, but postponed the announcement due to his concern about the μ/π ratio.41

At the Stanford Linear Accelerator Center (SLAC), Burton Richter's team performed experiments on 9–10 November 1974. They also found a high probability of interaction at 3.1 GeV/c2. They called the particle "psi".42 On 11 November 1974, Richter met Ting at the SLAC,43 and they announced their discovery.44

Theorists immediately began to analyze the new particle.45 It was shown to have a lifetime on the scale of 10−20 seconds, suggesting special characteristics.4647 Thomas Appelquist and David Politzer suggested that the particle was composed of a charm quark and a charm antiquark whose spins were aligned in parallel. The two called this configuration "charmonium".48 Charmonium would have two forms: "orthocharmonium", where the spins of the two quarks are parallel, and "paracharmonium", where the spins align oppositely.49 Murray Gell-Mann also believed in the idea of charmonium.50 Some other theorists, such as Richard Feynman, initially thought the new particle consisted of an up quark with a charm antiquark.51

On 15 November 1974, Ting and Richter issued a press release about their discovery.52 On 21 November at the SLAC, SPEAR found a resonance of the J/psi particle at 3.7 GeV/c2 as Martin Breidenbach and Terence Goldman had predicted.53 This particle was called ψ′ ("psi-prime").54 In late November, Appelquist and Politzer published their paper theorizing charmonium. Glashow and Alvaro De Rujula also published a paper called "Is Bound Charm Found?", in which they used the charm quark and asymptotic freedom to explain the properties of the J/psi meson.55

Eventually, on 2 December 1974, Physical Review Letters (PRL) published the discovery papers of J and psi, by Ting56 and Richter57 respectively.58 The discovery of the psi-prime was published the following week.59 Then, on 6 January 1975, PRL published nine theoretical papers on the J/psi particle; according to Michael Riordan, five of them "promoted the charm hypothesis and its variations".60 In 1976, Ting and Richter shared the Nobel Prize in Physics for their discovery "of a heavy elementary particle of the new kind".61

In August 1976, in The New York Times, Glashow recalled his wager and commented, "John [Iliopoulos]'s wine and my hat had been saved in the nick of time".62 At the next EMS conference, spectroscopists ate Mexican candy hats supplied by the organizers.6364 Frank Close wrote a Nature article titled "Iliopoulos won his bet" in the same year, saying the 18th ICHEP was "indeed dominated by that very discovery".65 No-one paid off their bets to Iliopoulos.6667

Other charmed particles (1975–1977)

In April 1975, E. G. Cazzoli et al., including Palmer and Samios, published their earlier ambiguous evidence for the charmed baryon.68 By the time of the Lepton–Photon Symposium in August 1975, eight new heavy particles had been discovered.69 These particles, however, have zero total charm.70 Starting from the fourth quarter of that year, physicists began to look for particles with a net, or "naked", charm.71

On 3 May 1976 at SLAC, Gerson Goldhaber and François Pierre identified a 1.87 GeV/c2 peak, which suggested the presence of a neutral charmed D meson according to Glashow's prediction. On 5 May, Goldhaber and Pierre published a joint memorandum about their discovery of the "naked charm".72 By the time of the 18th International Conference on High Energy Physics, more charmed particles had been discovered. Riordan said "solid evidence for charm surfaced in session after session" at the conference, confirming the existence of the charm quark.7374 The charmed strange meson was discovered in 1977.7576

Later and current research

In 2002, the SELEX Collaboration at Fermilab published the first observation of the doubly charmed baryon Ξ+cc ("double charmed xi+").77 It is a three-quark particle containing two charm quarks. The team found doubly charmed baryons with an up quark are more massive and have a higher rate of production than those with a down quark.78

In 2007, the BaBar and Belle collaborations each reported evidence for the mixing of two neutral charmed mesons, D0 and D0.798081 The evidence confirmed the mixing rate is small, as is predicted by the standard model.82 Neither studies found evidence for CP violation between the decays of the two charmed particles.8384

In 2022, the NNPDF Collaboration found evidence for the existence of intrinsic charm quarks in the proton.8586 In the same year, physicists also conducted a direct search for Higgs boson decays into charm quarks using the ATLAS detector of the Large Hadron Collider.87 They have determined that the Higgs–charm coupling is weaker than the Higgs–bottom coupling.88 On 7 July 2022, the LHCb experiment announced they had found evidence of direct CP violation in the decay of the D0 meson into pions.[70]

Characteristics

The charm quark is a second-generation up-type quark.8990 It carries charm, a quantum number.91 According to the 2022 Particle Physics Review, the charmed quark has a mass of 1.27±0.02 GeV/c2,92 a charge of +⁠2/3⁠ e, and a charm of +1.93 The charm quark is more massive than the strange quark: the ratio between the masses of the two is about 11.76+0.05−0.10.94

The CKM matrix describes the weak interaction of quarks.95 As of 2022, the values of the CKM matrix relating to the charm quark are:96 | V cd | = 0.221 ± 0.004 | V cs | = 0.975 ± 0.006 | V cb | = ( 40.8 ± 1.4 ) × 10 − 3 {\displaystyle {\begin{aligned}|V_{\text{cd}}|&=0.221\pm 0.004\\|V_{\text{cs}}|&=0.975\pm 0.006\\|V_{\text{cb}}|&=(40.8\pm 1.4)\times 10^{-3}\end{aligned}}}

Charm quarks can exist in either "open charm particles", which contain one or several charm quarks, or as charmonium states, which are bound states of a charm quark and a charm antiquark.97 There are several charmed mesons, including D± and D0.98 Charmed baryons include Λc, Σc, Ξc, Ωc, with various charges and resonances.99

Production and decay

Particles containing charm quarks can be produced via electron–positron collisions or in hadron collisions.100 Using different energies, electron–positron colliders can produce psi or upsilon mesons.101 Hadron colliders produce particles that contain charm quarks at a higher cross section.102103 The W boson can also decay into hadrons containing the charm quark or the charm antiquark.104 The Z boson can decay into charmonium through charm quark fragmentation.105 The Higgs boson can also decay to J/ψ or ηc through the same mechanism. The decay rate of the Higgs boson into charmonium is "governed by the charm-quark Yukawa coupling".106

The charm quark can decay into other quarks via weak decays.107 The charm quark also annihilates with the charm antiquark during the decays of ground-state charmonium mesons.108

Notes

Citations

Bibliography

News articles

Journal articles

Conferences

Books

Further reading

References

  1. Amati et al. 1964. - Amati, D.; Bacry, H.; Nuyts, J.; Prentki, J. (December 1964). "SU 4 and strong interactions". Il Nuovo Cimento. 34 (6): 1732–1750. Bibcode:1964NCim...34.1732A. doi:10.1007/BF02750568. S2CID 118803104. http://cds.cern.ch/record/344451

  2. Maki & Ohnuki 1964. - Maki, Z.; Ohnuki, Y. (1 July 1964). "Quartet Scheme for Elementary Particles". Progress of Theoretical Physics. 32 (1): 144–158. Bibcode:1964PThPh..32..144M. doi:10.1143/PTP.32.144. https://doi.org/10.1143%2FPTP.32.144

  3. Hara 1964. - Hara, Yasuo (11 May 1964). "Unitary Triplets and the Eightfold Way". Physical Review. 134 (3B): B701 – B704. Bibcode:1964PhRv..134..701H. doi:10.1103/PhysRev.134.B701. https://ui.adsabs.harvard.edu/abs/1964PhRv..134..701H

  4. Glashow, Iliopoulos & Maiani 1970, p. 1287. - Glashow, S. L.; Iliopoulos, J.; Maiani, L. (1970). "Weak Interactions with Lepton–Hadron Symmetry". Physical Review D. 2 (7): 1285–1292. Bibcode:1970PhRvD...2.1285G. doi:10.1103/PhysRevD.2.1285. https://ui.adsabs.harvard.edu/abs/1970PhRvD...2.1285G

  5. Glashow 1976. - Glashow, Sheldon L. (July 18, 1976). "The hunting of the quark". The New York Times. https://www.nytimes.com/1976/07/18/archives/the-hunting-of-the-atoms-and-their-nuclei-protons-and-neutrons.html

  6. Riordan 1987, p. 210. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  7. Glashow 1976. - Glashow, Sheldon L. (July 18, 1976). "The hunting of the quark". The New York Times. https://www.nytimes.com/1976/07/18/archives/the-hunting-of-the-atoms-and-their-nuclei-protons-and-neutrons.html

  8. Harari 1977, p. 6. - Harari, Haim (April 29–30, 1977). Three Generations of Quarks and Leptons (PDF). V International Conference on Experimental Meson Spectroscopy. Boston, Mass. SLAC-PUB-1974. http://slac.stanford.edu/cgi-wrap/getdoc/slac-pub-1974.pdf

  9. Riordan 1992, p. 1292. - Riordan, Michael (1992). "The Discovery of Quarks". Science. 256 (5061): 1287–93. Bibcode:1992Sci...256.1287R. doi:10.1126/science.256.5061.1287. JSTOR 2877300. PMID 17736758. S2CID 34363851. Retrieved 2023-06-01. http://www.jstor.org/stable/2877300

  10. Levine 2017. - Levine, Alaina G. (November 2017). "This Month in Physics History". APS News. Vol. 26, no. 10. American Physical Society. Retrieved 2023-06-01. https://www.aps.org/publications/apsnews/201711/history.cfm

  11. Workman et al. 2022, p. 32. - Workman, R. L.; et al. (Particle Data Group) (2022). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2022 (8). doi:10.1093/ptep/ptac097. hdl:20.500.11850/571164. 083C01. https://academic.oup.com/ptep/article/2022/8/083C01/6651666

  12. Griffiths 2008, p. 35. - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  13. Griffiths 2008, p. 37. - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  14. Griffiths 2008, p. 39. - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  15. Griffiths 2008, p. 41. - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  16. Griffiths 2008, p. 34. - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  17. Bjorken & Glashow 1964, p. 255. - Bjorken, B. J.; Glashow, S. L. (1964). "Elementary particles and SU(4)". Physics Letters. 11 (3): 255–257. Bibcode:1964PhL....11..255B. doi:10.1016/0031-9163(64)90433-0. https://ui.adsabs.harvard.edu/abs/1964PhL....11..255B

  18. Riordan 1987, p. 210. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  19. Griffiths 2008, pp. 44–45. - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  20. Glashow 1976. - Glashow, Sheldon L. (July 18, 1976). "The hunting of the quark". The New York Times. https://www.nytimes.com/1976/07/18/archives/the-hunting-of-the-atoms-and-their-nuclei-protons-and-neutrons.html

  21. Glashow, Iliopoulos & Maiani 1970, p. 1287. - Glashow, S. L.; Iliopoulos, J.; Maiani, L. (1970). "Weak Interactions with Lepton–Hadron Symmetry". Physical Review D. 2 (7): 1285–1292. Bibcode:1970PhRvD...2.1285G. doi:10.1103/PhysRevD.2.1285. https://ui.adsabs.harvard.edu/abs/1970PhRvD...2.1285G

  22. Appelquist, Barnett & Lane 1978, p. 390. - Appelquist, Thomas; Barnett, R. Michael; Lane, Kenneth (December 1978). "Charm and Beyond" (PDF). Annual Review of Nuclear and Particle Science. 28: 387–499. Bibcode:1978ARNPS..28..387A. doi:10.1146/annurev.ns.28.120178.002131. OSTI 1446842. https://www.slac.stanford.edu/cgi-bin/getdoc/slac-pub-2100.pdf

  23. Glashow, Iliopoulos & Maiani 1970, p. 1290–1291. - Glashow, S. L.; Iliopoulos, J.; Maiani, L. (1970). "Weak Interactions with Lepton–Hadron Symmetry". Physical Review D. 2 (7): 1285–1292. Bibcode:1970PhRvD...2.1285G. doi:10.1103/PhysRevD.2.1285. https://ui.adsabs.harvard.edu/abs/1970PhRvD...2.1285G

  24. Close 1976, p. 537. - Close, F. E. (1976). "Iliopoulos wins his bet" (PDF). Nature. 262 (5569): 537–38. Bibcode:1976Natur.262..537C. doi:10.1038/262537a0. S2CID 8569677. https://www.nature.com/articles/262537a0.pdf

  25. Riordan 1987, p. 297. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  26. Rosner 1998, p. 14. - Rosner, Jonathan L. (1998). The Arrival of Charm. Heavy Quarks at Fixed Targets. AIP Conference Proceedings. Vol. 459, no. 1 (published 1999). pp. 9–27. arXiv:hep-ph/9811359. doi:10.1063/1.57782. Retrieved 2023-06-02. https://pubs.aip.org/aip/acp/article/459/1/9/629777/The-arrival-of-charm

  27. According to Riordan, the word "outlanders" means "other kinds of physicists who did neutrino scattering or measured electron–positron collisions in storage rings."[23]

  28. Rosner 1998, p. 14. - Rosner, Jonathan L. (1998). The Arrival of Charm. Heavy Quarks at Fixed Targets. AIP Conference Proceedings. Vol. 459, no. 1 (published 1999). pp. 9–27. arXiv:hep-ph/9811359. doi:10.1063/1.57782. Retrieved 2023-06-02. https://pubs.aip.org/aip/acp/article/459/1/9/629777/The-arrival-of-charm

  29. Iliopoulos 1974, p. 100. - Iliopoulos, J. (July 1–10, 1974). Progress in Gauge Theories. XVII International Conference on High Energy Physics. Vol. III. London: Ecole Normale Superieure. pp. 89–116. PTENS-74-4. https://inspirehep.net/literature/3000

  30. Giudice, Gian Francesco. "Naturally speaking: the naturalness criterion and physics at the LHC". Perspectives on LHC physics (2008): 155–178.

  31. Gaillard & Lee 1974. - Gaillard, M.K.; Lee, B.W. (1974). "Rare decay modes of the K {\displaystyle K} mesons in gauge theories". Phys. Rev. D. 10 (3): 897–916. Bibcode:1974PhRvD..10..897G. doi:10.1103/PhysRevD.10.897. https://link.aps.org/doi/10.1103/PhysRevD.10.897

  32. Riordan 1987, pp. 295–297. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  33. Riordan 1987, pp. 296. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  34. Riordan 1987, p. 297. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  35. Cazzoli et al. 1975. - Cazzoli, E. G.; et al. (1975). "Evidence for ΔS = −ΔQ Currents or Charmed-Baryon Production by Neutrinos". Physical Review Letters. 34 (17): 1125–28. doi:10.1103/PhysRevLett.34.1125. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.34.1125

  36. Riordan 1987, p. 306. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  37. Riordan 1987, p. 306, "It was encouraging, but not convincing, evidence [...] this one was ambiguous". - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  38. Riordan 1987, pp. 297–298. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  39. Ting 1977, p. 239. - Ting, Samuel C. C. (April 1977). "The discovery of the J particle: A personal recollection" (PDF). Reviews of Modern Physics. 49 (2): 235–49. Bibcode:1977RvMP...49..235T. doi:10.1103/RevModPhys.49.235. http://cds.cern.ch/record/977942/files/RevModPhys.49.235.pdf

  40. Ting 1977, p. 243. - Ting, Samuel C. C. (April 1977). "The discovery of the J particle: A personal recollection" (PDF). Reviews of Modern Physics. 49 (2): 235–49. Bibcode:1977RvMP...49..235T. doi:10.1103/RevModPhys.49.235. http://cds.cern.ch/record/977942/files/RevModPhys.49.235.pdf

  41. Ting 1977, p. 244. - Ting, Samuel C. C. (April 1977). "The discovery of the J particle: A personal recollection" (PDF). Reviews of Modern Physics. 49 (2): 235–49. Bibcode:1977RvMP...49..235T. doi:10.1103/RevModPhys.49.235. http://cds.cern.ch/record/977942/files/RevModPhys.49.235.pdf

  42. Southworth 1976, p. 385. - Southworth, Brian, ed. (November 1976). "1976 Nobel Prize for Physics" (PDF). CERN Courier. Vol. 16, no. 11. Geneva, Switzerland: CERN. pp. 383–88. https://cds.cern.ch/record/1729999/files/vol16-issue11-p383-e.pdf

  43. Southworth 1976, pp. 385–386. - Southworth, Brian, ed. (November 1976). "1976 Nobel Prize for Physics" (PDF). CERN Courier. Vol. 16, no. 11. Geneva, Switzerland: CERN. pp. 383–88. https://cds.cern.ch/record/1729999/files/vol16-issue11-p383-e.pdf

  44. Rosner 1998, p. 16. - Rosner, Jonathan L. (1998). The Arrival of Charm. Heavy Quarks at Fixed Targets. AIP Conference Proceedings. Vol. 459, no. 1 (published 1999). pp. 9–27. arXiv:hep-ph/9811359. doi:10.1063/1.57782. Retrieved 2023-06-02. https://pubs.aip.org/aip/acp/article/459/1/9/629777/The-arrival-of-charm

  45. Riordan 1987, p. 300. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  46. Southworth 1976, p. 385. - Southworth, Brian, ed. (November 1976). "1976 Nobel Prize for Physics" (PDF). CERN Courier. Vol. 16, no. 11. Geneva, Switzerland: CERN. pp. 383–88. https://cds.cern.ch/record/1729999/files/vol16-issue11-p383-e.pdf

  47. Riordan 1987, p. 300. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  48. Riordan 1987, p. 300. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  49. Riordan 1987, p. 304. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  50. Riordan 1987, p. 300, "Murray ... thinks that the charm–anticharm vector meson is more likely". - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  51. Riordan 1987, p. 300. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  52. Riordan 1987, p. 301. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  53. Riordan 1987, p. 301. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  54. Riordan 1987, p. 303. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  55. Riordan 1987, p. 305. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  56. Aubert et al. 1974. - Aubert, J. J.; et al. (1974). "Experimental Observation of a Heavy Particle J". Physical Review Letters. 33 (23): 1404. Bibcode:1974PhRvL..33.1404A. doi:10.1103/PhysRevLett.33.1404. https://doi.org/10.1103%2FPhysRevLett.33.1404

  57. Augustin et al. 1974. - Augustin, J.-E.; et al. (1974). "Discovery of a Narrow Resonance in e+e− Annihilation". Physical Review Letters. 33 (23): 1406. Bibcode:1974PhRvL..33.1406A. doi:10.1103/PhysRevLett.33.1406. https://doi.org/10.1103%2FPhysRevLett.33.1406

  58. Riordan 1987, p. 305. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  59. Riordan 1987, p. 305. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  60. Riordan 1987, p. 306. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  61. Southworth 1976, p. 383. - Southworth, Brian, ed. (November 1976). "1976 Nobel Prize for Physics" (PDF). CERN Courier. Vol. 16, no. 11. Geneva, Switzerland: CERN. pp. 383–88. https://cds.cern.ch/record/1729999/files/vol16-issue11-p383-e.pdf

  62. Glashow 1976. - Glashow, Sheldon L. (July 18, 1976). "The hunting of the quark". The New York Times. https://www.nytimes.com/1976/07/18/archives/the-hunting-of-the-atoms-and-their-nuclei-protons-and-neutrons.html

  63. Riordan 1987, p. 321. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  64. Rosner 1998, p. 18. - Rosner, Jonathan L. (1998). The Arrival of Charm. Heavy Quarks at Fixed Targets. AIP Conference Proceedings. Vol. 459, no. 1 (published 1999). pp. 9–27. arXiv:hep-ph/9811359. doi:10.1063/1.57782. Retrieved 2023-06-02. https://pubs.aip.org/aip/acp/article/459/1/9/629777/The-arrival-of-charm

  65. Close 1976, p. 537. - Close, F. E. (1976). "Iliopoulos wins his bet" (PDF). Nature. 262 (5569): 537–38. Bibcode:1976Natur.262..537C. doi:10.1038/262537a0. S2CID 8569677. https://www.nature.com/articles/262537a0.pdf

  66. Riordan 1987, pp. 319–320. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  67. Rosner 1998, p. 16. - Rosner, Jonathan L. (1998). The Arrival of Charm. Heavy Quarks at Fixed Targets. AIP Conference Proceedings. Vol. 459, no. 1 (published 1999). pp. 9–27. arXiv:hep-ph/9811359. doi:10.1063/1.57782. Retrieved 2023-06-02. https://pubs.aip.org/aip/acp/article/459/1/9/629777/The-arrival-of-charm

  68. Cazzoli et al. 1975. - Cazzoli, E. G.; et al. (1975). "Evidence for ΔS = −ΔQ Currents or Charmed-Baryon Production by Neutrinos". Physical Review Letters. 34 (17): 1125–28. doi:10.1103/PhysRevLett.34.1125. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.34.1125

  69. Riordan 1987, pp. 310–311. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  70. Riordan 1987, p. 312. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  71. Riordan 1987, p. 317. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  72. Riordan 1987, p. 318. - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  73. Riordan 1987, p. 319, "Solid evidence for charm surfaced in session after session. There was no longer any doubt". - Riordan, Michael (1987). The Hunting of the Quark: A True Story of Modern Physics. Simon & Schuster. ISBN 978-0-671-50466-3. https://archive.org/details/huntingofquarktr00mich/

  74. Griffiths 2008, p. 47, "With these discoveries, the interpretation ... was established beyond reasonable doubt. More important, the quark model itself was put back on its feet". - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  75. Brandelik et al. 1977. - Brandelik, R.; et al. (DASP Collaboration) (1977). "On the origin of inclusive electron events in e+e− annihilation between 3.6 and 5.2 GeV". Physics Letters B. 70 (1): 125–31. Bibcode:1977PhLB...70..125B. doi:10.1016/0370-2693(77)90360-4. https://dx.doi.org/10.1016/0370-2693%2877%2990360-4

  76. Griffiths 2008, p. 47. - Griffiths, David (2008). Introduction to Elementary Particles. Wiley-VCH. ISBN 978-3-527-40601-2.

  77. Mattson et al. 2002. - Mattson, M.; et al. (SELEX Collaboration) (September 2002). "First Observation of the Doubly Charmed Baryon Ξ+cc". Physical Review Letters. 89 (11): 112001. arXiv:hep-ex/0208014. Bibcode:2002PhRvL..89k2001M. doi:10.1103/PhysRevLett.89.112001. hdl:11449/66973. PMID 12225136. S2CID 16737596. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.89.112001

  78. Yap 2002. - Yap, Diana Michele (2002-06-10). "Hunting the Doubly Charmed Baryon". Wired. Retrieved 2023-06-06. https://www.wired.com/2002/06/hunting-the-doubly-charmed-baryon/

  79. Aubert et al. 2007. - Aubert, B.; et al. (BaBar Collaboration) (2007). "Evidence for D o − D ¯ 0 {\displaystyle D^{o}-{\bar {D}}^{0}} Mixing". Physical Review Letters. 98 (21): 211802. doi:10.1103/PhysRevLett.98.211802. hdl:2445/140150. PMID 17677764. 211802. https://doi.org/10.1103%2FPhysRevLett.98.211802

  80. Starič et al. 2007. - Starič, M.; et al. (Belle Collaboration) (2007). "Evidence for D o − D ¯ 0 {\displaystyle D^{o}-{\bar {D}}^{0}} Mixing". Physical Review Letters. 98 (21): 211803. doi:10.1103/PhysRevLett.98.211803. PMID 17677765. S2CID 30918611. 211803. https://doi.org/10.1103%2FPhysRevLett.98.211803

  81. Gersabeck 2014, p. 2. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737

  82. Aubert et al. 2007, p. 4. - Aubert, B.; et al. (BaBar Collaboration) (2007). "Evidence for D o − D ¯ 0 {\displaystyle D^{o}-{\bar {D}}^{0}} Mixing". Physical Review Letters. 98 (21): 211802. doi:10.1103/PhysRevLett.98.211802. hdl:2445/140150. PMID 17677764. 211802. https://doi.org/10.1103%2FPhysRevLett.98.211802

  83. Aubert et al. 2007. - Aubert, B.; et al. (BaBar Collaboration) (2007). "Evidence for D o − D ¯ 0 {\displaystyle D^{o}-{\bar {D}}^{0}} Mixing". Physical Review Letters. 98 (21): 211802. doi:10.1103/PhysRevLett.98.211802. hdl:2445/140150. PMID 17677764. 211802. https://doi.org/10.1103%2FPhysRevLett.98.211802

  84. Starič et al. 2007. - Starič, M.; et al. (Belle Collaboration) (2007). "Evidence for D o − D ¯ 0 {\displaystyle D^{o}-{\bar {D}}^{0}} Mixing". Physical Review Letters. 98 (21): 211803. doi:10.1103/PhysRevLett.98.211803. PMID 17677765. S2CID 30918611. 211803. https://doi.org/10.1103%2FPhysRevLett.98.211803

  85. The NNPDF Collaboration 2022. - The NNPDF Collaboration (2022). "Evidence for intrinsic charm quarks in the proton". Nature. 608 (7923): 483–487. arXiv:2208.08372. Bibcode:2022Natur.608..483N. doi:10.1038/s41586-022-04998-2. PMC 9385499. PMID 35978125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385499

  86. Thompson & Howe 2022. - Thompson, Benjamin; Howe, Nick Petrić (2022-08-17). "Do protons have intrinsic charm? New evidence suggests yes". Nature. doi:10.1038/d41586-022-02237-2. PMID 35978168. S2CID 251645562. Retrieved 2022-06-03. https://www.nature.com/articles/d41586-022-02237-2

  87. Aad et al. 2022. - Aad, G.; et al. (ATLAS Collaboration) (2022). "Direct constraint on the Higgs–charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector". The European Physical Journal C. 82 (717): 717. arXiv:2201.11428. Bibcode:2022EPJC...82..717A. doi:10.1140/epjc/s10052-022-10588-3. S2CID 251688816. https://link.springer.com/article/10.1140/epjc/s10052-022-10588-3

  88. ATLAS experiment 2022. - ATLAS experiment (2 May 2022). "Higgs-boson charm coupling weaker than bottom". CERN Courier. Retrieved 2023-06-03. https://cerncourier.com/a/higgs-boson-charm-coupling-weaker-than-bottom/

  89. Harari 1977, p. 6. - Harari, Haim (April 29–30, 1977). Three Generations of Quarks and Leptons (PDF). V International Conference on Experimental Meson Spectroscopy. Boston, Mass. SLAC-PUB-1974. http://slac.stanford.edu/cgi-wrap/getdoc/slac-pub-1974.pdf

  90. Gersabeck 2014, p. 2. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737

  91. Appelquist, Barnett & Lane 1978, p. 388. - Appelquist, Thomas; Barnett, R. Michael; Lane, Kenneth (December 1978). "Charm and Beyond" (PDF). Annual Review of Nuclear and Particle Science. 28: 387–499. Bibcode:1978ARNPS..28..387A. doi:10.1146/annurev.ns.28.120178.002131. OSTI 1446842. https://www.slac.stanford.edu/cgi-bin/getdoc/slac-pub-2100.pdf

  92. The Particle Physics Review uses the unit GeV instead of GeV/c2.[10] This is because particle physics uses natural units, in which the speed of light is set to be one.[72] The Review also notes this mass corresponds to the "running" mass in the minimal subtraction scheme (MS scheme).[10]

  93. Workman et al. 2022, p. 32. - Workman, R. L.; et al. (Particle Data Group) (2022). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2022 (8). doi:10.1093/ptep/ptac097. hdl:20.500.11850/571164. 083C01. https://academic.oup.com/ptep/article/2022/8/083C01/6651666

  94. Workman et al. 2022, p. 32. - Workman, R. L.; et al. (Particle Data Group) (2022). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2022 (8). doi:10.1093/ptep/ptac097. hdl:20.500.11850/571164. 083C01. https://academic.oup.com/ptep/article/2022/8/083C01/6651666

  95. Thomson 2013, p. 368. - Thomson, Mark (2013). Modern Particle Physics. Cambridge University Press. ISBN 978-1-107-03426-6.

  96. Workman et al. 2022, pp. 262–263. - Workman, R. L.; et al. (Particle Data Group) (2022). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2022 (8). doi:10.1093/ptep/ptac097. hdl:20.500.11850/571164. 083C01. https://academic.oup.com/ptep/article/2022/8/083C01/6651666

  97. Gersabeck 2014, p. 2. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737

  98. Workman et al. 2022, pp. 43–45. - Workman, R. L.; et al. (Particle Data Group) (2022). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2022 (8). doi:10.1093/ptep/ptac097. hdl:20.500.11850/571164. 083C01. https://academic.oup.com/ptep/article/2022/8/083C01/6651666

  99. Workman et al. 2022, pp. 100–4. - Workman, R. L.; et al. (Particle Data Group) (2022). "Review of Particle Physics". Progress of Theoretical and Experimental Physics. 2022 (8). doi:10.1093/ptep/ptac097. hdl:20.500.11850/571164. 083C01. https://academic.oup.com/ptep/article/2022/8/083C01/6651666

  100. Gersabeck 2014, pp. 3–4. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737

  101. Gersabeck 2014, p. 3. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737

  102. According to Mark Thomson, a cross section in particle physics is a measure of quantum mechanical probability for the interaction.[79] It is the ratio between the interaction rate per target particle and the incident particle flux.[80] /wiki/Mark_Thomson_(physicist)

  103. Gersabeck 2014, p. 4. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737

  104. Thomson 2013, p. 412. - Thomson, Mark (2013). Modern Particle Physics. Cambridge University Press. ISBN 978-1-107-03426-6.

  105. Braaten, Cheung & Yuan 1993. - Braaten, Eric; Cheung, Kingman; Yuan, Tzu Chiang (1993). "Z0 decay into charmonium via charm quark fragmentation". Physical Review D. 48 (9): 4230–4235. arXiv:hep-ph/9302307. Bibcode:1993PhRvD..48.4230B. doi:10.1103/PhysRevD.48.4230. PMID 10016703. S2CID 14348242. https://link.aps.org/doi/10.1103/PhysRevD.48.4230

  106. Han et al. 2022. - Han, Tao; et al. (August 2022). "Higgs boson decay to charmonia via c-quark fragmentation". Journal of High Energy Physics. 2022 (73): 73. arXiv:2202.08273. Bibcode:2022JHEP...08..073H. doi:10.1007/JHEP08(2022)073. S2CID 246904813. https://link.springer.com/article/10.1007/JHEP08(2022)073

  107. Gersabeck 2014, p. 2. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737

  108. Gersabeck 2014, p. 2. - Gersabeck, Marco (28–31 October 2014). Introduction to Charm Physics. Flavorful Ways to New Physics. Freudenstadt - Lauterbad, Germany. arXiv:1503.00032. https://www.researchgate.net/publication/273067737