Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Isotopes of gallium

Natural gallium (31Ga) consists of a mixture of two stable isotopes: gallium-69 and gallium-71. Twenty-nine radioisotopes are known, all synthetic, with atomic masses ranging from 60 to 89; along with three nuclear isomers, 64mGa, 72mGa and 74mGa. Most of the isotopes with atomic mass numbers below 69 decay to isotopes of zinc, while most of the isotopes with masses above 71 decay to isotopes of germanium. Among them, the most commercially important radioisotopes are gallium-67 and gallium-68.

Gallium-67 (half-life 3.3 days) is a gamma-emitting isotope (the gamma ray emitted immediately after electron capture) used in standard nuclear medical imaging, in procedures usually referred to as gallium scans. It is usually used as the free ion, Ga3+. It is the longest-lived radioisotope of gallium.

The shorter-lived gallium-68 (half-life 68 minutes) is a positron-emitting isotope generated in very small quantities from germanium-68 in gallium-68 generators or in much greater quantities by proton bombardment of 68Zn in low-energy medical cyclotrons, for use in a small minority of diagnostic PET scans. For this use, it is usually attached as a tracer to a carrier molecule (for example the somatostatin analogue DOTATOC), which gives the resulting radiopharmaceutical a different tissue-uptake specificity from the ionic 67Ga radioisotope normally used in standard gallium scans.

We don't have any images related to Isotopes of gallium yet.
We don't have any YouTube videos related to Isotopes of gallium yet.
We don't have any PDF documents related to Isotopes of gallium yet.
We don't have any Books related to Isotopes of gallium yet.
We don't have any archived web articles related to Isotopes of gallium yet.

List of isotopes

Nuclide3ZNIsotopic mass (Da)456Half-life7Decaymode89Daughterisotope10Spin andparity111213Natural abundance (mole fraction)
Excitation energyNormal proportion14Range of variation
60Ga312959.95750(22)#72.4(17) msβ+ (98.4%)60Zn(2+)
β+, p (1.6%)59Cu
β+, α? (<0.023%)56Ni
61Ga313060.949399(41)165.9(25) msβ+61Zn3/2−
β+, p? (<0.25%)60Cu
62Ga313161.94418964(68)116.122(21) msβ+62Zn0+
63Ga313262.9392942(14)32.4(5) sβ+63Zn3/2−
64Ga313363.9368404(15)2.627(12) minβ+64Zn0(+#)
64mGa42.85(8) keV21.9(7) μsIT64Ga(2+)
65Ga313464.93273442(85)15.133(28) minβ+65Zn3/2−
66Ga313565.9315898(12)9.304(8) hβ+66Zn0+
67Ga15313666.9282023(13)3.2617(4) dEC67Zn3/2−
68Ga16313767.9279802(15)67.842(16) minβ+68Zn1+
69Ga313868.9255735(13)Stable3/2−0.60108(50)
70Ga313969.9260219(13)21.14(5) minβ− (99.59%)70Ge1+
EC (0.41%)70Zn
71Ga314070.92470255(87)Stable3/2−0.39892(50)
72Ga314171.92636745(88)14.025(10) hβ−72Ge3−
72mGa119.66(5) keV39.68(13) msIT72Ga(0+)
73Ga314272.9251747(18)4.86(3) hβ−73Ge1/2−
73mGa0.15(9) keV<200 msIT?73Ga3/2−
β−73Ge
74Ga314373.9269457(32)8.12(12) minβ−74Ge(3−)
74mGa59.571(14) keV9.5(10) sIT (>75%)74Ga(0)(+#)
β−? (<25%)74Ge
75Ga314474.92650448(72)126(2) sβ−75Ge3/2−
76Ga314575.9288276(21)30.6(6) sβ−76Ge2−
77Ga314676.9291543(26)13.2(2) sβ−77mGe (88%)3/2−
77Ge (12%)
78Ga314777.9316109(11)5.09(5) sβ−78Ge2−
78mGa498.9(5) keV110(3) nsIT78Ga
79Ga314878.9328516(13)2.848(3) sβ− (99.911%)79Ge3/2−
β−, n (0.089%)78Ge
80Ga314979.9364208(31)1.9(1) sβ− (99.14%)80Ge6−
β−, n (.86%)79Ge
80mGa1722.45(10) keV1.3(2) sβ−80Ge3−
β−, n?79Ge
IT80Ga
81Ga315080.9381338(35)1.217(5) sβ− (87.5%)81mGe5/2−
β−, n (12.5%)80Ge
82Ga315181.9431765(26)600(2) msβ− (78.8%)82Ge2−
β−, n (21.2%)81Ge
β−, 2n?80Ge
82mGa140.7(3) keV93.5(67) nsIT82Ga(4−)
83Ga315282.9471203(28)310.0(7) msβ−, n (85%)82Ge5/2−#
β− (15%)83Ge
β−, 2n?81Ge
84Ga315383.952663(32)97.6(12) msβ− (55%)84Ge0−#
β−, n (43%)83Ge
β−, 2n (1.6%)82Ge
85Ga315484.957333(40)95.3(10) msβ−, n (77%)84Ge(5/2−)
β− (22%)85Ge
β−, 2n (1.3%)83Ge
86Ga315585.96376(43)#49(2) msβ−, n (69%)85Ge
β−, 2n (16.2%)84Ge
β− (15%)86Ge
87Ga315686.96901(54)#29(4) msβ−, n (81%)86Ge5/2−#
β−, 2n (10.2%)85Ge
β− (9%)87Ge
88Ga18315787.97596(54)#β−?88Ge
β−, n?87Ge
89Ga193158
This table header & footer:
  • view

Gallium-67

Gallium-67 (67Ga) has a half-life of 3.26 days and decays by electron capture and gamma emission (in de-excitation) to stable zinc-67. It is a radiopharmaceutical used in gallium scans (alternatively, the shorter-lived gallium-68 may be used). This gamma-emitting isotope is imaged by gamma camera.

Gallium-68

Gallium-68 (68Ga) is a positron emitter with a half-life of 68 minutes, decaying to stable zinc-68. It is a radiopharmaceutical, generated in situ from the electron capture of germanium-68 (half-life 271 days) owing to its short half-life. This positron-emitting isotope can be imaged efficiently by PET scan (see gallium scan); alternatively, the longer-lived gallium-67 may be used. Gallium-68 is only used as a positron emitting tag for a ligand which binds to certain tissues, such as DOTATOC and DOTATATE,20 which are somatostatin analogues useful for imaging neuroendocrine tumors. Gallium-68 DOTA scans are increasingly replacing octreotide scans (a type of indium-111 scan using octreotide as a somatostatin receptor ligand). The 68Ga is bound to a chemical such as DOTATOC and the positrons it emits are imaged by PET-CT scan. Such scans are useful in locating neuroendocrine tumors and pancreatic cancer.21 Thus, octreotide scanning for NET tumors is being increasingly replaced by gallium-68 DOTATOC scan.22

See also

Daughter products other than gallium

References

  1. Kumlin, J; Dam, J; Langkjaer, N; Chua, C.J.; Borjian, S.; Kassaian, A; Hook, B; Zeisler, S; Schaffer, P; Helge, Thisgaard (October 2019). "Multi-Curie Production of Ga-68 on a Biomedical Cyclotron". Conference: EANM'19. Retrieved 13 December 2019. https://www.researchgate.net/publication/336589918

  2. Thisgaard, Helge; Kumlin, Joel; Langkjær, Niels; Chua, Jansen; Hook, Brian; Jensen, Mikael; Kassaian, Amir; Zeisler, Stefan; Borjian, Sogol; Cross, Michael; Schaffer, Paul (2021-01-07). "Multi-curie production of gallium-68 on a biomedical cyclotron and automated radiolabelling of PSMA-11 and DOTATATE". EJNMMI Radiopharmacy and Chemistry. 6 (1): 1. doi:10.1186/s41181-020-00114-9. ISSN 2365-421X. PMC 7790954. PMID 33411034. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790954

  3. mGa – Excited nuclear isomer. /wiki/Nuclear_isomer

  4. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf. /wiki/Doi_(identifier)

  5. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.

  6. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).

  7. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  8. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  9. Modes of decay: EC:Electron captureIT:Isomeric transitionn:Neutron emissionp:Proton emission /wiki/Electron_capture

  10. Bold symbol as daughter – Daughter product is stable.

  11. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  12. ( ) spin value – Indicates spin with weak assignment arguments.

  13. # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).

  14. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae. https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf

  15. Deexcitation gamma used in medical imaging /wiki/Gallium_scan

  16. Medically useful radioisotope /wiki/Radioisotope

  17. Order of ground state and isomer is uncertain.

  18. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)

  19. Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313. /wiki/Doi_(identifier)

  20. Chauhan, Aman; El-Khouli, Riham; Waits, Timothy; Agrawal, Rohitashva; Siddiqui, Fariha; Tarter, Zachary; Horn, Millicent; Weiss, Heidi; Oates, Elizabeth; Evers, B. Mark; Anthony, Lowell (2020-08-11). "Post FDA approval analysis of 200 gallium-68 DOTATATE imaging: A retrospective analysis in neuroendocrine tumor patients". Oncotarget. 11 (32): 3061–3068. doi:10.18632/oncotarget.27695. ISSN 1949-2553. PMC 7429177. PMID 32850010. https://www.oncotarget.com/article/27695/text/

  21. Hofman, M.S.; Kong, G.; Neels, O.C.; Eu, P.; Hong, E.; Hicks, R.J. (2012). "High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours". Journal of Medical Imaging and Radiation Oncology. 56 (1): 40–47. doi:10.1111/j.1754-9485.2011.02327.x. PMID 22339744. S2CID 21843609. https://doi.org/10.1111%2Fj.1754-9485.2011.02327.x

  22. Scott, A, et al. (2018). "Management of Small Bowel Neuroendocrine Tumors". Journal of Oncology Practice. 14 (8): 471–482. doi:10.1200/JOP.18.00135. PMC 6091496. PMID 30096273. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6091496