Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions.
Thiele, RĂŒdiger (2005). "On Hilbert and his twenty-four problems". In Van Brummelen, Glen (ed.). Mathematics and the historian's craft. The Kenneth O. May Lectures. CMS Books in Mathematics/Ouvrages de MathĂ©matiques de la SMC. Vol. 21. pp. 243â295. ISBN 978-0-387-25284-1. 978-0-387-25284-1
Guy, Richard (1994). Unsolved Problems in Number Theory (2nd ed.). Springer. p. vii. ISBN 978-1-4899-3585-4. Archived from the original on 2019-03-23. Retrieved 2016-09-22.. 978-1-4899-3585-4
Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society. 21 (2): 186â196. doi:10.1112/blms/21.2.186. /wiki/Goro_Shimura
Friedl, Stefan (2014). "Thurston's vision and the virtual fibering theorem for 3-manifolds". Jahresbericht der Deutschen Mathematiker-Vereinigung. 116 (4): 223â241. doi:10.1365/s13291-014-0102-x. MRÂ 3280572. S2CIDÂ 56322745. /wiki/Doi_(identifier)
Thurston, William P. (1982). "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry". Bulletin of the American Mathematical Society. New Series. 6 (3): 357â381. doi:10.1090/S0273-0979-1982-15003-0. MRÂ 0648524. /wiki/Doi_(identifier)
"Millennium Problems". claymath.org. Archived from the original on 2017-06-06. Retrieved 2015-01-20. https://web.archive.org/web/20170606121331/http://claymath.org/millennium-problems
"Fields Medal awarded to Artur Avila". Centre national de la recherche scientifique. 2014-08-13. Archived from the original on 2018-07-10. Retrieved 2018-07-07. https://web.archive.org/web/20180710010437/http://www2.cnrs.fr/en/2435.htm?debut=8&theme1=12
Bellos, Alex (2014-08-13). "Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained". The Guardian. Archived from the original on 2016-10-21. Retrieved 2018-07-07. https://www.theguardian.com/science/alexs-adventures-in-numberland/2014/aug/13/fields-medals-2014-maths-avila-bhargava-hairer-mirzakhani
Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBNÂ 978-90-5199-490-2. 978-90-5199-490-2
"DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14. https://web.archive.org/web/20090304121240/http://edition.cnn.com/2008/TECH/science/10/09/darpa.challenges/index.html
"Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25. https://web.archive.org/web/20121001111057/http://www.math.utk.edu/~vasili/refs/darpa07.MathChallenges.html
Bloom, Thomas. "ErdĆs Problems". Retrieved 2024-08-25. /wiki/Thomas_Bloom
"Millennium Problems". claymath.org. Archived from the original on 2017-06-06. Retrieved 2015-01-20. https://web.archive.org/web/20170606121331/http://claymath.org/millennium-problems
"Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15. https://web.archive.org/web/20131215120130/http://www.claymath.org/millenium-problems/poincar%C3%A9-conjecture
rybu (November 7, 2009). "Smooth 4-dimensional Poincare conjecture". Open Problem Garden. Archived from the original on 2018-01-25. Retrieved 2019-08-06. http://www.openproblemgarden.org/?q=op/smooth_4_dimensional_poincare_conjecture
Khukhro, Evgeny I.; Mazurov, Victor D. (2019). Unsolved Problems in Group Theory. The Kourovka Notebook. arXiv:1401.0300v16. /wiki/Victor_Mazurov
RSFSR, MV i SSO; Russie), UralÊčskij gosudarstvennyj universitet im A. M. GorÊčkogo (Ekaterinbourg (1969). ĐĄĐČĐ”ŃĐŽĐ»ĐŸĐČŃĐșĐ°Ń ŃĐ”ŃŃаЎŃ: ĐœĐ”ŃĐ”ŃĐ”ĐœĐœŃĐ” заЎаŃĐž ŃĐ”ĐŸŃОО ĐżĐŸĐŽĐłŃŃпп (in Russian). S. l. https://books.google.com/books?id=nKwgzgEACAAJ
ĐĄĐČĐ”ŃĐŽĐ»ĐŸĐČŃĐșĐ°Ń ŃĐ”ŃŃаЎŃ: Хб. ĐœĐ”ŃĐ”ŃŃĐœĐœŃŃ
Đ·Đ°ĐŽĐ°Ń ĐżĐŸ ŃĐ”ĐŸŃОО ĐżĐŸĐ»ŃĐłŃŃпп. ĐĄĐČĐ”ŃĐŽĐ»ĐŸĐČŃĐș: ĐŁŃалŃŃĐșĐžĐč ĐłĐŸŃŃЎаŃŃŃĐČĐ”ĐœĐœŃĐč ŃĐœĐžĐČĐ”ŃŃĐžŃĐ”Ń. 1979. /w/index.php?title=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA&action=edit&redlink=1
ĐĄĐČĐ”ŃĐŽĐ»ĐŸĐČŃĐșĐ°Ń ŃĐ”ŃŃаЎŃ: Хб. ĐœĐ”ŃĐ”ŃŃĐœĐœŃŃ
Đ·Đ°ĐŽĐ°Ń ĐżĐŸ ŃĐ”ĐŸŃОО ĐżĐŸĐ»ŃĐłŃŃпп. ĐĄĐČĐ”ŃĐŽĐ»ĐŸĐČŃĐș: ĐŁŃалŃŃĐșĐžĐč ĐłĐŸŃŃЎаŃŃŃĐČĐ”ĐœĐœŃĐč ŃĐœĐžĐČĐ”ŃŃĐžŃĐ”Ń. 1989. /w/index.php?title=%D0%A1%D0%B2%D0%B5%D1%80%D0%B4%D0%BB%D0%BE%D0%B2%D1%81%D0%BA&action=edit&redlink=1
ĐĐĐХйРĐĐĐĄĐĐĐŻ ĐąĐйРĐĐĐŹ [DNIESTER NOTEBOOK] (PDF) (in Russian). The Russian Academy of Sciences. 1993. http://math.nsc.ru/LBRT/a1/files/dnestr93.pdf
"DNIESTER NOTEBOOK: Unsolved Problems in the Theory of Rings and Modules" (PDF). University of Saskatchewan. Retrieved 2019-08-15. https://math.usask.ca/~bremner/research/publications/dniester.pdf
ĐŃĐ»Đ°ĐłĐŸĐ»ŃŃĐșĐ°Ń ŃĐ”ŃŃĐ°ĐŽŃ [Erlagol notebook] (PDF) (in Russian). The Novosibirsk State University. 2018. http://uamt.conf.nstu.ru/erl_note.pdf
Dowling, T. A. (February 1973). "A class of geometric lattices based on finite groups". Journal of Combinatorial Theory. Series B. 14 (1): 61â86. doi:10.1016/S0095-8956(73)80007-3. https://doi.org/10.1016%2FS0095-8956%2873%2980007-3
Aschbacher, Michael (1990). "On Conjectures of Guralnick and Thompson". Journal of Algebra. 135 (2): 277â343. doi:10.1016/0021-8693(90)90292-V. /wiki/Michael_Aschbacher
Kung, H. T.; Traub, Joseph Frederick (1974). "Optimal order of one-point and multipoint iteration". Journal of the ACM. 21 (4): 643â651. doi:10.1145/321850.321860. S2CIDÂ 74921. /wiki/H._T._Kung
Smyth, Chris (2008). "The Mahler measure of algebraic numbers: a survey". In McKee, James; Smyth, Chris (eds.). Number Theory and Polynomials. London Mathematical Society Lecture Note Series. Vol. 352. Cambridge University Press. pp. 322â349. ISBN 978-0-521-71467-9. 978-0-521-71467-9
Berenstein, Carlos A. (2001) [1994]. "Pompeiu problem". Encyclopedia of Mathematics. EMS Press. https://www.encyclopediaofmath.org/index.php?title=Pompeiu_problem
Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995). "Balancing pairs and the cross product conjecture". Order. 12 (4): 327â349. CiteSeerXÂ 10.1.1.38.7841. doi:10.1007/BF01110378. MRÂ 1368815. S2CIDÂ 14793475.. /wiki/Order_(journal)
Tao, Terence (2018). "Some remarks on the lonely runner conjecture". Contributions to Discrete Mathematics. 13 (2): 1â31. arXiv:1701.02048. doi:10.11575/cdm.v13i2.62728. /wiki/Terence_Tao
GonzĂĄlez-JimĂ©nez, Enrique; Xarles, Xavier (2014). "On a conjecture of Rudin on squares in arithmetic progressions". LMS Journal of Computation and Mathematics. 17 (1): 58â76. arXiv:1301.5122. doi:10.1112/S1461157013000259. S2CID 11615385. /wiki/ArXiv_(identifier)
Bruhn, Henning; Schaudt, Oliver (2015). "The journey of the union-closed sets conjecture" (PDF). Graphs and Combinatorics. 31 (6): 2043â2074. arXiv:1309.3297. doi:10.1007/s00373-014-1515-0. MRÂ 3417215. S2CIDÂ 17531822. Archived (PDF) from the original on 2017-08-08. Retrieved 2017-07-18. http://www.zaik.uni-koeln.de/~schaudt/UCSurvey.pdf
Murnaghan, F. D. (1938). "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups". American Journal of Mathematics. 60 (1): 44â65. doi:10.2307/2371542. JSTORÂ 2371542. MRÂ 1507301. PMCÂ 1076971. PMIDÂ 16577800. /wiki/American_Journal_of_Mathematics
"Dedekind Numbers and Related Sequences" (PDF). Archived from the original (PDF) on 2015-03-15. Retrieved 2020-04-30. https://web.archive.org/web/20150315021125/http://www.sfu.ca/~tyusun/ThesisDedekind.pdf
LiĆkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". Theoretical Computer Science. 304 (1): 129â156. doi:10.1016/S0304-3975(03)00080-X. S2CIDÂ 33806100. /wiki/Doi_(identifier)
S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.
Kaloshin, Vadim; Sorrentino, Alfonso (2018). "On the local Birkhoff conjecture for convex billiards". Annals of Mathematics. 188 (1): 315â380. arXiv:1612.09194. doi:10.4007/annals.2018.188.1.6. S2CIDÂ 119171182. /wiki/Vadim_Kaloshin
Sarnak, Peter (2011). "Recent progress on the quantum unique ergodicity conjecture". Bulletin of the American Mathematical Society. 48 (2): 211â228. doi:10.1090/S0273-0979-2011-01323-4. MRÂ 2774090. /wiki/Peter_Sarnak
Paul Halmos, Ergodic theory. Chelsea, New York, 1956.
Kari, Jarkko (2009). "Structure of reversible cellular automata". Structure of Reversible Cellular Automata. International Conference on Unconventional Computation. Lecture Notes in Computer Science. Vol. 5715. Springer. p. 6. Bibcode:2009LNCS.5715....6K. doi:10.1007/978-3-642-03745-0_5. ISBN 978-3-642-03744-3. 978-3-642-03744-3
"Open Q â Solving and rating of hard Sudoku". english.log-it-ex.com. Archived from the original on 10 November 2017. https://web.archive.org/web/20171110030932/http://english.log-it-ex.com/2.html
"Open Q â Solving and rating of hard Sudoku". english.log-it-ex.com. Archived from the original on 10 November 2017. https://web.archive.org/web/20171110030932/http://english.log-it-ex.com/2.html
"Open Q â Solving and rating of hard Sudoku". english.log-it-ex.com. Archived from the original on 10 November 2017. https://web.archive.org/web/20171110030932/http://english.log-it-ex.com/2.html
"Higher-Dimensional Tic-Tac-Toe". PBS Infinite Series. YouTube. 2017-09-21. Archived from the original on 2017-10-11. Retrieved 2018-07-29. https://www.youtube.com/watch?v=FwJZa-helig
Barlet, Daniel; Peternell, Thomas; Schneider, Michael (1990). "On two conjectures of Hartshorne's". Mathematische Annalen. 286 (1â3): 13â25. doi:10.1007/BF01453563. S2CIDÂ 122151259. /wiki/Mathematische_Annalen
Dupont, Johan L. (2001). Scissors congruences, group homology and characteristic classes. Nankai Tracts in Mathematics. Vol. 1. World Scientific Publishing Co., Inc., River Edge, NJ. p. 6. doi:10.1142/9789812810335. ISBN 978-981-02-4507-8. MR 1832859. Archived from the original on 2016-04-29.. 978-981-02-4507-8
Maulik, Davesh; Nekrasov, Nikita; Okounov, Andrei; Pandharipande, Rahul (2004-06-05). GromovâWitten theory and DonaldsonâThomas theory, I. arXiv:math/0312059. Bibcode:2003math.....12059M. /wiki/Nikita_Nekrasov
Zariski, Oscar (1971). "Some open questions in the theory of singularities". Bulletin of the American Mathematical Society. 77 (4): 481â491. doi:10.1090/S0002-9904-1971-12729-5. MRÂ 0277533. /wiki/Oscar_Zariski
Bereg, Sergey; Dumitrescu, Adrian; Jiang, Minghui (2010). "On covering problems of Rado". Algorithmica. 57 (3): 538â561. doi:10.1007/s00453-009-9298-z. MRÂ 2609053. S2CIDÂ 6511998. /wiki/Doi_(identifier)
Melissen, Hans (1993). "Densest packings of congruent circles in an equilateral triangle". American Mathematical Monthly. 100 (10): 916â925. doi:10.2307/2324212. JSTORÂ 2324212. MRÂ 1252928. /wiki/Doi_(identifier)
Conway, John H.; Neil J.A. Sloane (1999). Sphere Packings, Lattices and Groups (3rd ed.). New York: Springer-Verlag. pp. 21â22. ISBN 978-0-387-98585-5. 978-0-387-98585-5
Hales, Thomas (2017). The Reinhardt conjecture as an optimal control problem. arXiv:1703.01352. /wiki/Thomas_Callister_Hales
Brass, Peter; Moser, William; Pach, Jånos (2005). Research Problems in Discrete Geometry. New York: Springer. p. 45. ISBN 978-0387-23815-9. MR 2163782. 978-0387-23815-9
Gardner, Martin (1995). New Mathematical Diversions (Revised Edition). Washington: Mathematical Association of America. p. 251.
Musin, Oleg R.; Tarasov, Alexey S. (2015). "The Tammes Problem for N = 14". Experimental Mathematics. 24 (4): 460â468. doi:10.1080/10586458.2015.1022842. S2CIDÂ 39429109. /wiki/Doi_(identifier)
Barros, Manuel (1997). "General Helices and a Theorem of Lancret". Proceedings of the American Mathematical Society. 125 (5): 1503â1509. doi:10.1090/S0002-9939-97-03692-7. JSTORÂ 2162098. /wiki/Proceedings_of_the_American_Mathematical_Society
Katz, Mikhail G. (2007). Systolic geometry and topology. Mathematical Surveys and Monographs. Vol. 137. American Mathematical Society, Providence, RI. p. 57. doi:10.1090/surv/137. ISBN 978-0-8218-4177-8. MR 2292367. 978-0-8218-4177-8
Rosenberg, Steven (1997). The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds. London Mathematical Society Student Texts. Vol. 31. Cambridge: Cambridge University Press. pp. 62â63. doi:10.1017/CBO9780511623783. ISBN 978-0-521-46300-3. MR 1462892. 978-0-521-46300-3
Nikolayevsky, Y. (2003). "Two theorems on Osserman manifolds". Differential Geometry and Its Applications. 18 (3): 239â253. doi:10.1016/S0926-2245(02)00160-2. /wiki/Doi_(identifier)
Ghosh, Subir Kumar; Goswami, Partha P. (2013). "Unsolved problems in visibility graphs of points, segments, and polygons". ACM Computing Surveys. 46 (2): 22:1â22:29. arXiv:1012.5187. doi:10.1145/2543581.2543589. S2CIDÂ 8747335. /wiki/ArXiv_(identifier)
Boltjansky, V.; Gohberg, I. (1985). "11. Hadwiger's Conjecture". Results and Problems in Combinatorial Geometry. Cambridge University Press. pp. 44â46..
Morris, Walter D.; Soltan, Valeriu (2000). "The ErdĆs-Szekeres problem on points in convex positionâa survey". Bull. Amer. Math. Soc. 37 (4): 437â458. doi:10.1090/S0273-0979-00-00877-6. MRÂ 1779413.; Suk, Andrew (2016). "On the ErdĆsâSzekeres convex polygon problem". J. Amer. Math. Soc. 30 (4): 1047â1053. arXiv:1604.08657. doi:10.1090/jams/869. S2CIDÂ 15732134. /wiki/Doi_(identifier)
Kalai, Gil (1989). "The number of faces of centrally-symmetric polytopes". Graphs and Combinatorics. 5 (1): 389â391. doi:10.1007/BF01788696. MRÂ 1554357. S2CIDÂ 8917264.. /wiki/Gil_Kalai
Moreno, JosĂ© Pedro; Prieto-MartĂnez, Luis Felipe (2021). "El problema de los triĂĄngulos de Kobon" [The Kobon triangles problem]. La Gaceta de la Real Sociedad MatemĂĄtica Española (in Spanish). 24 (1): 111â130. hdl:10486/705416. MR 4225268. /wiki/Hdl_(identifier)
Guy, Richard K. (1983). "An olla-podrida of open problems, often oddly posed". American Mathematical Monthly. 90 (3): 196â200. doi:10.2307/2975549. JSTORÂ 2975549. MRÂ 1540158. /wiki/Richard_K._Guy
MatouĆĄek, JiĆĂ (2002). Lectures on discrete geometry. Graduate Texts in Mathematics. Vol. 212. Springer-Verlag, New York. p. 206. doi:10.1007/978-1-4613-0039-7. ISBN 978-0-387-95373-1. MR 1899299. 978-0-387-95373-1
Brass, Peter; Moser, William; Pach, JĂĄnos (2005). "5.1 The Maximum Number of Unit Distances in the Plane". Research problems in discrete geometry. Springer, New York. pp. 183â190. ISBN 978-0-387-23815-9. MR 2163782. 978-0-387-23815-9
Dey, Tamal K. (1998). "Improved bounds for planar k-sets and related problems". Discrete & Computational Geometry. 19 (3): 373â382. doi:10.1007/PL00009354. MRÂ 1608878.; TĂłth, GĂĄbor (2001). "Point sets with many k-sets". Discrete & Computational Geometry. 26 (2): 187â194. doi:10.1007/s004540010022. MRÂ 1843435.. /wiki/Tamal_Dey
Aronov, Boris; DujmoviÄ, Vida; Morin, Pat; Ooms, AurĂ©lien; Schultz Xavier da Silveira, LuĂs Fernando (2019). "More TurĂĄn-type theorems for triangles in convex point sets". Electronic Journal of Combinatorics. 26 (1): P1.8. arXiv:1706.10193. Bibcode:2017arXiv170610193A. doi:10.37236/7224. Archived from the original on 2019-02-18. Retrieved 2019-02-18. /wiki/Boris_Aronov
Atiyah, Michael (2001). "Configurations of points". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 359 (1784): 1375â1387. Bibcode:2001RSPTA.359.1375A. doi:10.1098/rsta.2001.0840. ISSNÂ 1364-503X. MRÂ 1853626. S2CIDÂ 55833332. /wiki/Michael_Atiyah
Finch, S. R.; Wetzel, J. E. (2004). "Lost in a forest". American Mathematical Monthly. 11 (8): 645â654. doi:10.2307/4145038. JSTORÂ 4145038. MRÂ 2091541. /wiki/American_Mathematical_Monthly
Howards, Hugh Nelson (2013). "Forming the Borromean rings out of arbitrary polygonal unknots". Journal of Knot Theory and Its Ramifications. 22 (14): 1350083, 15. arXiv:1406.3370. doi:10.1142/S0218216513500831. MRÂ 3190121. S2CIDÂ 119674622. /wiki/ArXiv_(identifier)
Miller, Ezra; Pak, Igor (2008). "Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings". Discrete & Computational Geometry. 39 (1â3): 339â388. doi:10.1007/s00454-008-9052-3. MRÂ 2383765.. Announced in 2003. /wiki/Igor_Pak
Solomon, Yaar; Weiss, Barak (2016). "Dense forests and Danzer sets". Annales Scientifiques de l'Ăcole Normale SupĂ©rieure. 49 (5): 1053â1074. arXiv:1406.3807. doi:10.24033/asens.2303. MR 3581810. S2CID 672315.; Conway, John H. Five $1,000 Problems (Update 2017) (PDF). On-Line Encyclopedia of Integer Sequences. Archived (PDF) from the original on 2019-02-13. Retrieved 2019-02-12. /wiki/ArXiv_(identifier)
Brandts, Jan; Korotov, Sergey; KĆĂĆŸek, Michal; Ć olc, Jakub (2009). "On nonobtuse simplicial partitions" (PDF). SIAM Review. 51 (2): 317â335. Bibcode:2009SIAMR..51..317B. doi:10.1137/060669073. MRÂ 2505583. S2CIDÂ 216078793. Archived (PDF) from the original on 2018-11-04. Retrieved 2018-11-22.. See in particular Conjecture 23, p. 327. https://pure.uva.nl/ws/files/836396/73198_315330.pdf
Arutyunyants, G.; Iosevich, A. (2004). "Falconer conjecture, spherical averages and discrete analogs". In Pach, JĂĄnos (ed.). Towards a Theory of Geometric Graphs. Contemp. Math. Vol. 342. Amer. Math. Soc., Providence, RI. pp. 15â24. doi:10.1090/conm/342/06127. ISBN 978-0-8218-3484-8. MR 2065249. 978-0-8218-3484-8
Matschke, Benjamin (2014). "A survey on the square peg problem". Notices of the American Mathematical Society. 61 (4): 346â352. doi:10.1090/noti1100. /wiki/Notices_of_the_American_Mathematical_Society
Katz, Nets; Tao, Terence (2002). "Recent progress on the Kakeya conjecture". Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000). Publicacions MatemĂ tiques. pp. 161â179. CiteSeerX 10.1.1.241.5335. doi:10.5565/PUBLMAT_Esco02_07. MR 1964819. S2CID 77088. /wiki/Nets_Katz
Weaire, Denis, ed. (1997). The Kelvin Problem. CRC Press. p. 1. ISBN 978-0-7484-0632-6. 978-0-7484-0632-6
Brass, Peter; Moser, William; Pach, Jånos (2005). Research problems in discrete geometry. New York: Springer. p. 457. ISBN 978-0-387-29929-7. MR 2163782. 978-0-387-29929-7
Mahler, Kurt (1939). "Ein Minimalproblem fĂŒr konvexe Polygone". Mathematica (Zutphen) B: 118â127.
Norwood, Rick; Poole, George; Laidacker, Michael (1992). "The worm problem of Leo Moser". Discrete & Computational Geometry. 7 (2): 153â162. doi:10.1007/BF02187832. MRÂ 1139077. /w/index.php?title=Rick_Norwood&action=edit&redlink=1
Wagner, Neal R. (1976). "The Sofa Problem" (PDF). The American Mathematical Monthly. 83 (3): 188â189. doi:10.2307/2977022. JSTORÂ 2977022. Archived (PDF) from the original on 2015-04-20. Retrieved 2014-05-14. http://www.cs.utsa.edu/~wagner/pubs/corner/corner_final.pdf
Chai, Ying; Yuan, Liping; Zamfirescu, Tudor (JuneâJuly 2018). "Rupert Property of Archimedean Solids". The American Mathematical Monthly. 125 (6): 497â504. doi:10.1080/00029890.2018.1449505. S2CIDÂ 125508192. /wiki/The_American_Mathematical_Monthly
Steininger, Jakob; Yurkevich, Sergey (December 27, 2021). An algorithmic approach to Rupert's problem. arXiv:2112.13754. /wiki/ArXiv_(identifier)
Demaine, Erik D.; O'Rourke, Joseph (2007). "Chapter 22. Edge Unfolding of Polyhedra". Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press. pp. 306â338. /wiki/Erik_Demaine
Ghomi, Mohammad (2018-01-01). "DĂŒrer's Unfolding Problem for Convex Polyhedra". Notices of the American Mathematical Society. 65 (1): 25â27. doi:10.1090/noti1609. ISSNÂ 0002-9920. https://doi.org/10.1090%2Fnoti1609
Whyte, L. L. (1952). "Unique arrangements of points on a sphere". The American Mathematical Monthly. 59 (9): 606â611. doi:10.2307/2306764. JSTORÂ 2306764. MRÂ 0050303. /wiki/Doi_(identifier)
ACW (May 24, 2012). "Convex uniform 5-polytopes". Open Problem Garden. Archived from the original on October 5, 2016. Retrieved 2016-10-04.. http://www.openproblemgarden.org/op/convex_uniform_5_polytopes
Klostermeyer, W.; Mynhardt, C. (2015). "Protecting a graph with mobile guards". Applicable Analysis and Discrete Mathematics. 10: 21. arXiv:1407.5228. doi:10.2298/aadm151109021k.. /wiki/ArXiv_(identifier)
Pleanmani, Nopparat (2019). "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph". Discrete Mathematics, Algorithms and Applications. 11 (6): 1950068, 7. doi:10.1142/s179383091950068x. MRÂ 4044549. S2CIDÂ 204207428. /wiki/Doi_(identifier)
Baird, William; Bonato, Anthony (2012). "Meyniel's conjecture on the cop number: a survey". Journal of Combinatorics. 3 (2): 225â238. arXiv:1308.3385. doi:10.4310/JOC.2012.v3.n2.a6. MRÂ 2980752. S2CIDÂ 18942362. /wiki/ArXiv_(identifier)
Zhu, Xuding (1999). "The Game Coloring Number of Planar Graphs". Journal of Combinatorial Theory, Series B. 75 (2): 245â258. doi:10.1006/jctb.1998.1878. https://doi.org/10.1006%2Fjctb.1998.1878
Bousquet, Nicolas; Bartier, Valentin (2019). "Linear Transformations Between Colorings in Chordal Graphs". In Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.). 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany. LIPIcs. Vol. 144. Schloss Dagstuhl â Leibniz-Zentrum fĂŒr Informatik. pp. 24:1â24:15. doi:10.4230/LIPIcs.ESA.2019.24. ISBN 978-3-95977-124-5. S2CID 195791634. 978-3-95977-124-5
Gethner, Ellen (2018). "To the Moon and beyond". In Gera, Ralucca; Haynes, Teresa W.; Hedetniemi, Stephen T. (eds.). Graph Theory: Favorite Conjectures and Open Problems, II. Problem Books in Mathematics. Springer International Publishing. pp. 115â133. doi:10.1007/978-3-319-97686-0_11. ISBN 978-3-319-97684-6. MR 3930641. 978-3-319-97684-6
Chung, Fan; Graham, Ron (1998). ErdĆs on Graphs: His Legacy of Unsolved Problems. A K Peters. pp. 97â99.. /wiki/Fan_Chung
Chudnovsky, Maria; Seymour, Paul (2014). "Extending the GyĂĄrfĂĄs-Sumner conjecture". Journal of Combinatorial Theory. Series B. 105: 11â16. doi:10.1016/j.jctb.2013.11.002. MRÂ 3171779. /wiki/Maria_Chudnovsky
Toft, Bjarne (1996). "A survey of Hadwiger's conjecture". Congressus Numerantium. 115: 249â283. MRÂ 1411244.. /wiki/MR_(identifier)
Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991). Unsolved Problems in Geometry. Springer-Verlag., Problem G10. /wiki/Richard_K._Guy
HĂ€gglund, Jonas; Steffen, Eckhard (2014). "Petersen-colorings and some families of snarks". Ars Mathematica Contemporanea. 7 (1): 161â173. doi:10.26493/1855-3974.288.11a. MRÂ 3047618. Archived from the original on 2016-10-03. Retrieved 2016-09-30.. http://amc-journal.eu/index.php/amc/article/viewFile/288/247
Jensen, Tommy R.; Toft, Bjarne (1995). "12.20 List-Edge-Chromatic Numbers". Graph Coloring Problems. New York: Wiley-Interscience. pp. 201â202. ISBN 978-0-471-02865-9.. 978-0-471-02865-9
Molloy, Michael; Reed, Bruce (1998). "A bound on the total chromatic number". Combinatorica. 18 (2): 241â280. CiteSeerXÂ 10.1.1.24.6514. doi:10.1007/PL00009820. MRÂ 1656544. S2CIDÂ 9600550.. /wiki/Bruce_Reed_(mathematician)
Baråt, Jånos; Tóth, Géza (2010). "Towards the Albertson Conjecture". Electronic Journal of Combinatorics. 17 (1): R73. arXiv:0909.0413. Bibcode:2009arXiv0909.0413B. doi:10.37236/345.. /wiki/ArXiv_(identifier)
Fulek, Radoslav; Pach, JĂĄnos (2011). "A computational approach to Conway's thrackle conjecture". Computational Geometry. 44 (6â7): 345â355. arXiv:1002.3904. doi:10.1016/j.comgeo.2011.02.001. MRÂ 2785903.. /wiki/J%C3%A1nos_Pach
Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; Sinclair, Alistair (2004). "Cuts, trees and
â
1
{\displaystyle \ell _{1}}
-embeddings of graphs". Combinatorica. 24 (2): 233â269. CiteSeerXÂ 10.1.1.698.8978. doi:10.1007/s00493-004-0015-x. MRÂ 2071334. S2CIDÂ 46133408. /wiki/Alistair_Sinclair
Hartsfield, Nora; Ringel, Gerhard (2013). Pearls in Graph Theory: A Comprehensive Introduction. Dover Books on Mathematics. Courier Dover Publications. p. 247. ISBNÂ 978-0-486-31552-2. MRÂ 2047103.. 978-0-486-31552-2
HlinÄnĂœ, Petr (2010). "20 years of Negami's planar cover conjecture" (PDF). Graphs and Combinatorics. 26 (4): 525â536. CiteSeerX 10.1.1.605.4932. doi:10.1007/s00373-010-0934-9. MR 2669457. S2CID 121645. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-10-04.. http://www.fi.muni.cz/~hlineny/papers/plcover20-gc.pdf
Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016). "On self-approaching and increasing-chord drawings of 3-connected planar graphs". Journal of Computational Geometry. 7 (1): 47â69. arXiv:1409.0315. doi:10.20382/jocg.v7i1a3. MR 3463906. S2CID 1500695. /wiki/Journal_of_Computational_Geometry
Pach, JĂĄnos; Sharir, Micha (2009). "5.1 Crossingsâthe Brick Factory Problem". Combinatorial Geometry and Its Algorithmic Applications: The AlcalĂĄ Lectures. Mathematical Surveys and Monographs. Vol. 152. American Mathematical Society. pp. 126â127.. /wiki/J%C3%A1nos_Pach
Demaine, E.; O'Rourke, J. (2002â2012). "Problem 45: Smallest Universal Set of Points for Planar Graphs". The Open Problems Project. Archived from the original on 2012-08-14. Retrieved 2013-03-19.. /wiki/Erik_Demaine
Conway, John H. Five $1,000 Problems (Update 2017) (PDF). Online Encyclopedia of Integer Sequences. Archived (PDF) from the original on 2019-02-13. Retrieved 2019-02-12. /wiki/John_Horton_Conway
mdevos; Wood, David (December 7, 2019). "Jorgensen's Conjecture". Open Problem Garden. Archived from the original on 2016-11-14. Retrieved 2016-11-13.. http://www.openproblemgarden.org/op/jorgensens_conjecture
Ducey, Joshua E. (2017). "On the critical group of the missing Moore graph". Discrete Mathematics. 340 (5): 1104â1109. arXiv:1509.00327. doi:10.1016/j.disc.2016.10.001. MRÂ 3612450. S2CIDÂ 28297244. /wiki/Discrete_Mathematics_(journal)
Blokhuis, A.; Brouwer, A. E. (1988). "Geodetic graphs of diameter two". Geometriae Dedicata. 25 (1â3): 527â533. doi:10.1007/BF00191941. MRÂ 0925851. S2CIDÂ 189890651. /wiki/Andries_Brouwer
Florek, Jan (2010). "On Barnette's conjecture". Discrete Mathematics. 310 (10â11): 1531â1535. doi:10.1016/j.disc.2010.01.018. MRÂ 2601261.. /wiki/Discrete_Mathematics_(journal)
Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014). "On toughness and Hamiltonicity of $2K_2$-free graphs" (PDF). Journal of Graph Theory. 75 (3): 244â255. doi:10.1002/jgt.21734. MRÂ 3153119. S2CIDÂ 1377980. https://ris.utwente.nl/ws/files/6416631/jgt21734.pdf
Jaeger, F. (1985). "A survey of the cycle double cover conjecture". Annals of Discrete Mathematics 27 â Cycles in Graphs. North-Holland Mathematics Studies. Vol. 27. pp. 1â12. doi:10.1016/S0304-0208(08)72993-1. ISBN 978-0-444-87803-8.. 978-0-444-87803-8
Heckman, Christopher Carl; Krakovski, Roi (2013). "Erdös-Gyårfås conjecture for cubic planar graphs". Electronic Journal of Combinatorics. 20 (2). P7. doi:10.37236/3252.. /wiki/Doi_(identifier)
Chudnovsky, Maria (2014). "The ErdösâHajnal conjectureâa survey" (PDF). Journal of Graph Theory. 75 (2): 178â190. arXiv:1606.08827. doi:10.1002/jgt.21730. MR 3150572. S2CID 985458. Zbl 1280.05086. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-09-22.. /wiki/Maria_Chudnovsky
Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981). "Covering and packing in graphs. IV. Linear arboricity". Networks. 11 (1): 69â72. doi:10.1002/net.3230110108. MRÂ 0608921.. /wiki/Jin_Akiyama
Babai, LĂĄszlĂł (June 9, 1994). "Automorphism groups, isomorphism, reconstruction". Handbook of Combinatorics. Archived from the original (PostScript) on 13 June 2007. /wiki/L%C3%A1szl%C3%B3_Babai
Lenz, Hanfried; Ringel, Gerhard (1991). "A brief review on Egmont Köhler's mathematical work". Discrete Mathematics. 97 (1â3): 3â16. doi:10.1016/0012-365X(91)90416-Y. MR 1140782. /wiki/Discrete_Mathematics_(journal)
Fomin, Fedor V.; HĂžie, Kjartan (2006). "Pathwidth of cubic graphs and exact algorithms". Information Processing Letters. 97 (5): 191â196. doi:10.1016/j.ipl.2005.10.012. MRÂ 2195217. /wiki/Doi_(identifier)
Schwenk, Allen (2012). Some History on the Reconstruction Conjecture (PDF). Joint Mathematics Meetings. Archived from the original (PDF) on 2015-04-09. Retrieved 2018-11-26. https://web.archive.org/web/20150409233306/http://faculty.nps.edu/rgera/Conjectures/jmm2012/Schwenk,%20%20Some%20History%20on%20the%20RC.pdf
Ramachandran, S. (1981). "On a new digraph reconstruction conjecture". Journal of Combinatorial Theory. Series B. 31 (2): 143â149. doi:10.1016/S0095-8956(81)80019-6. MRÂ 0630977. /wiki/Journal_of_Combinatorial_Theory
KĂŒhn, Daniela; Mycroft, Richard; Osthus, Deryk (2011). "A proof of Sumner's universal tournament conjecture for large tournaments". Proceedings of the London Mathematical Society. Third Series. 102 (4): 731â766. arXiv:1010.4430. doi:10.1112/plms/pdq035. MR 2793448. S2CID 119169562. Zbl 1218.05034.. /wiki/Daniela_K%C3%BChn
Tuza, Zsolt (1990). "A conjecture on triangles of graphs". Graphs and Combinatorics. 6 (4): 373â380. doi:10.1007/BF01787705. MRÂ 1092587. S2CIDÂ 38821128. /wiki/Doi_(identifier)
BreĆĄar, BoĆĄtjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; KlavĆŸar, Sandi; Rall, Douglas F. (2012). "Vizing's conjecture: a survey and recent results". Journal of Graph Theory. 69 (1): 46â76. CiteSeerXÂ 10.1.1.159.7029. doi:10.1002/jgt.20565. MRÂ 2864622. S2CIDÂ 9120720.. /wiki/Journal_of_Graph_Theory
Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi:10.1007/978-3-319-25859-1. ISBNÂ 978-3-319-25857-7. S2CIDÂ 7727433 â via link.springer.com. 978-3-319-25857-7
Kitaev, Sergey (2017-05-16). A Comprehensive Introduction to the Theory of Word-Representable Graphs. International Conference on Developments in Language Theory. arXiv:1705.05924v1. doi:10.1007/978-3-319-62809-7_2. /wiki/International_Conference_on_Developments_in_Language_Theory
Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics. 12 (2): 278â296. doi:10.1134/S1990478918020084. S2CIDÂ 125814097 â via Springer Link. /wiki/Doi_(identifier)
Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "ĐŃаŃŃ, ĐżŃДЎŃŃаĐČĐžĐŒŃĐ” ĐČ ĐČОЎД ŃĐ»ĐŸĐČ. ĐĐ±Đ·ĐŸŃ ŃДзŃĐ»ŃŃаŃĐŸĐČ" [Word-representable graphs: A survey]. ĐĐžŃĐșŃĐ”ŃĐœ. Đ°ĐœĐ°Đ»ĐžĐ· Đž ĐžŃŃлДЎ. ĐŸĐżĐ”Ń. (in Russian). 25 (2): 19â53. doi:10.17377/daio.2018.25.588. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus
Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi:10.1007/978-3-319-25859-1. ISBNÂ 978-3-319-25857-7. S2CIDÂ 7727433 â via link.springer.com. 978-3-319-25857-7
Kitaev, Sergey (2017-05-16). A Comprehensive Introduction to the Theory of Word-Representable Graphs. International Conference on Developments in Language Theory. arXiv:1705.05924v1. doi:10.1007/978-3-319-62809-7_2. /wiki/International_Conference_on_Developments_in_Language_Theory
Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics. 12 (2): 278â296. doi:10.1134/S1990478918020084. S2CIDÂ 125814097 â via Springer Link. /wiki/Doi_(identifier)
Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "ĐŃаŃŃ, ĐżŃДЎŃŃаĐČĐžĐŒŃĐ” ĐČ ĐČОЎД ŃĐ»ĐŸĐČ. ĐĐ±Đ·ĐŸŃ ŃДзŃĐ»ŃŃаŃĐŸĐČ" [Word-representable graphs: A survey]. ĐĐžŃĐșŃĐ”ŃĐœ. Đ°ĐœĐ°Đ»ĐžĐ· Đž ĐžŃŃлДЎ. ĐŸĐżĐ”Ń. (in Russian). 25 (2): 19â53. doi:10.17377/daio.2018.25.588. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus
Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi:10.1007/978-3-319-25859-1. ISBNÂ 978-3-319-25857-7. S2CIDÂ 7727433 â via link.springer.com. 978-3-319-25857-7
Kitaev, Sergey (2017-05-16). A Comprehensive Introduction to the Theory of Word-Representable Graphs. International Conference on Developments in Language Theory. arXiv:1705.05924v1. doi:10.1007/978-3-319-62809-7_2. /wiki/International_Conference_on_Developments_in_Language_Theory
Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics. 12 (2): 278â296. doi:10.1134/S1990478918020084. S2CIDÂ 125814097 â via Springer Link. /wiki/Doi_(identifier)
Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "ĐŃаŃŃ, ĐżŃДЎŃŃаĐČĐžĐŒŃĐ” ĐČ ĐČОЎД ŃĐ»ĐŸĐČ. ĐĐ±Đ·ĐŸŃ ŃДзŃĐ»ŃŃаŃĐŸĐČ" [Word-representable graphs: A survey]. ĐĐžŃĐșŃĐ”ŃĐœ. Đ°ĐœĐ°Đ»ĐžĐ· Đž ĐžŃŃлДЎ. ĐŸĐżĐ”Ń. (in Russian). 25 (2): 19â53. doi:10.17377/daio.2018.25.588. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus
Marc Elliot Glen (2016). "Colourability and word-representability of near-triangulations". arXiv:1605.01688 [math.CO]. /wiki/ArXiv_(identifier)
Kitaev, Sergey (2014-03-06). "On graphs with representation number 3". arXiv:1403.1616v1 [math.CO]. /wiki/ArXiv_(identifier)
Glen, Marc; Kitaev, Sergey; Pyatkin, Artem (2018). "On the representation number of a crown graph". Discrete Applied Mathematics. 244: 89â93. arXiv:1609.00674. doi:10.1016/j.dam.2018.03.013. S2CIDÂ 46925617. https://www.sciencedirect.com/science/article/pii/S0166218X18301045
Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi:10.1007/978-3-319-25859-1. ISBNÂ 978-3-319-25857-7. S2CIDÂ 7727433 â via link.springer.com. 978-3-319-25857-7
Kitaev, Sergey (2017-05-16). A Comprehensive Introduction to the Theory of Word-Representable Graphs. International Conference on Developments in Language Theory. arXiv:1705.05924v1. doi:10.1007/978-3-319-62809-7_2. /wiki/International_Conference_on_Developments_in_Language_Theory
Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics. 12 (2): 278â296. doi:10.1134/S1990478918020084. S2CIDÂ 125814097 â via Springer Link. /wiki/Doi_(identifier)
Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "ĐŃаŃŃ, ĐżŃДЎŃŃаĐČĐžĐŒŃĐ” ĐČ ĐČОЎД ŃĐ»ĐŸĐČ. ĐĐ±Đ·ĐŸŃ ŃДзŃĐ»ŃŃаŃĐŸĐČ" [Word-representable graphs: A survey]. ĐĐžŃĐșŃĐ”ŃĐœ. Đ°ĐœĐ°Đ»ĐžĐ· Đž ĐžŃŃлДЎ. ĐŸĐżĐ”Ń. (in Russian). 25 (2): 19â53. doi:10.17377/daio.2018.25.588. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus
Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi:10.1007/978-3-319-25859-1. ISBNÂ 978-3-319-25857-7. S2CIDÂ 7727433 â via link.springer.com. 978-3-319-25857-7
Kitaev, Sergey (2017-05-16). A Comprehensive Introduction to the Theory of Word-Representable Graphs. International Conference on Developments in Language Theory. arXiv:1705.05924v1. doi:10.1007/978-3-319-62809-7_2. /wiki/International_Conference_on_Developments_in_Language_Theory
Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics. 12 (2): 278â296. doi:10.1134/S1990478918020084. S2CIDÂ 125814097 â via Springer Link. /wiki/Doi_(identifier)
Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "ĐŃаŃŃ, ĐżŃДЎŃŃаĐČĐžĐŒŃĐ” ĐČ ĐČОЎД ŃĐ»ĐŸĐČ. ĐĐ±Đ·ĐŸŃ ŃДзŃĐ»ŃŃаŃĐŸĐČ" [Word-representable graphs: A survey]. ĐĐžŃĐșŃĐ”ŃĐœ. Đ°ĐœĐ°Đ»ĐžĐ· Đž ĐžŃŃлДЎ. ĐŸĐżĐ”Ń. (in Russian). 25 (2): 19â53. doi:10.17377/daio.2018.25.588. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=da&paperid=894&option_lang=rus
Spinrad, Jeremy P. (2003). "2. Implicit graph representation". Efficient Graph Representations. American Mathematical Soc. pp. 17â30. ISBN 978-0-8218-2815-1.. 978-0-8218-2815-1
"Seymour's 2nd Neighborhood Conjecture". faculty.math.illinois.edu. Archived from the original on 11 January 2019. Retrieved 17 August 2022. https://faculty.math.illinois.edu/~west/openp/2ndnbhd.html
mdevos (May 4, 2007). "5-flow conjecture". Open Problem Garden. Archived from the original on November 26, 2018. http://www.openproblemgarden.org/op/5_flow_conjecture
mdevos (March 31, 2010). "4-flow conjecture". Open Problem Garden. Archived from the original on November 26, 2018. http://www.openproblemgarden.org/op/4_flow_conjecture
Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic. 54 (1): 207â220. doi:10.2307/2275025. JSTORÂ 2275025. S2CIDÂ 41940041. /wiki/Doi_(identifier)
Shelah S (1990). Classification Theory. North-Holland.
Shelah S (1990). Classification Theory. North-Holland.
Shelah S (1990). Classification Theory. North-Holland.
Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBNÂ 978-1-904987-71-0. 978-1-904987-71-0
Peretz, Assaf (2006). "Geometry of forking in simple theories". Journal of Symbolic Logic. 71 (1): 347â359. arXiv:math/0412356. doi:10.2178/jsl/1140641179. S2CIDÂ 9380215. /wiki/ArXiv_(identifier)
Cherlin, Gregory; Shelah, Saharon (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory. Series B. 97 (3): 293â333. arXiv:math/0512218. doi:10.1016/j.jctb.2006.05.008. S2CIDÂ 10425739. /wiki/Saharon_Shelah
DĆŸamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae. 159 (1): 1â50. arXiv:math/9802134. Bibcode:1998math......2134S. doi:10.4064/fm-159-1-1-50. S2CIDÂ 8846429. /wiki/Saharon_Shelah
Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBNÂ 978-0-8218-4893-7. Archived (PDF) from the original on July 29, 2010. Retrieved February 20, 2014. 978-0-8218-4893-7
Shelah, Saharon (2009). "Introduction to classification theory for abstract elementary classes". arXiv:0903.3428 [math.LO]. /wiki/ArXiv_(identifier)
Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479â506. /wiki/Jon_Barwise
Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645â715.
Keisler, HJ (1967). "Ultraproducts which are not saturated". J. Symb. Log. 32 (1): 23â46. doi:10.2307/2271240. JSTORÂ 2271240. S2CIDÂ 250345806. /wiki/Doi_(identifier)
Malliaris, Maryanthe; Shelah, Saharon (10 August 2012). "A Dividing Line Within Simple Unstable Theories". arXiv:1208.2140 [math.LO]. Malliaris, M.; Shelah, S. (2012). "A Dividing Line within Simple Unstable Theories". arXiv:1208.2140 [math.LO]. /wiki/Maryanthe_Malliaris
Conrey, Brian (2016). "Lectures on the Riemann zeta function (book review)". Bulletin of the American Mathematical Society. 53 (3): 507â512. doi:10.1090/bull/1525. /wiki/Brian_Conrey
Singmaster, David (1971). "Research Problems: How often does an integer occur as a binomial coefficient?". American Mathematical Monthly. 78 (4): 385â386. doi:10.2307/2316907. JSTORÂ 2316907. MRÂ 1536288.. /wiki/David_Singmaster
Guo, Song; Sun, Zhi-Wei (2005). "On odd covering systems with distinct moduli". Advances in Applied Mathematics. 35 (2): 182â187. arXiv:math/0412217. doi:10.1016/j.aam.2005.01.004. MRÂ 2152886. S2CIDÂ 835158. /wiki/ArXiv_(identifier)
"Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key". Archived from the original on 2016-03-27. Retrieved 2016-03-18. http://www2.lbl.gov/Science-Articles/Archive/pi-random.html
Robertson, John P. (1996-10-01). "Magic Squares of Squares". Mathematics Magazine. 69 (4): 289â293. doi:10.1080/0025570X.1996.11996457. ISSNÂ 0025-570X. /wiki/Doi_(identifier)
Waldschmidt, Michel (2013). Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables. Springer. pp. 14, 16. ISBN 978-3-662-11569-5. 978-3-662-11569-5
Waldschmidt, Michel (2008). An introduction to irrationality and transcendence methods (PDF). 2008 Arizona Winter School. Archived from the original (PDF) on 16 December 2014. Retrieved 15 December 2014. https://web.archive.org/web/20141216004531/http://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/AWSLecture5.pdf
Albert, John. Some unsolved problems in number theory (PDF). Archived from the original (PDF) on 17 January 2014. Retrieved 15 December 2014. https://web.archive.org/web/20140117150133/http://www2.math.ou.edu/~jalbert/courses/openprob2.pdf
Waldschmidt, Michel (2013). Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables. Springer. pp. 14, 16. ISBN 978-3-662-11569-5. 978-3-662-11569-5
For some background on the numbers in this problem, see articles by Eric W. Weisstein at Wolfram MathWorld (all articles accessed 22 August 2024):
Euler's Constant
Catalan's Constant
Apéry's Constant
irrational numbers (Archived 2015-03-27 at the Wayback Machine)
transcendental numbers (Archived 2014-11-13 at the Wayback Machine)
irrationality measures (Archived 2015-04-21 at the Wayback Machine)
/wiki/Eric_W._Weisstein
Waldschmidt, Michel (2003-12-24). "Open Diophantine Problems". arXiv:math/0312440. /wiki/ArXiv_(identifier)
Kontsevich, Maxim; Zagier, Don (2001). Engquist, Björn; Schmid, Wilfried (eds.). "Periods". Mathematics Unlimited â 2001 and Beyond. Berlin, Heidelberg: Springer. pp. 771â808. doi:10.1007/978-3-642-56478-9_39. ISBN 978-3-642-56478-9. Retrieved 2024-08-22. 978-3-642-56478-9
Waldschmidt, Michel (2003-12-24). "Open Diophantine Problems". arXiv:math/0312440. /wiki/ArXiv_(identifier)
Weisstein, Eric W. "Khinchin's Constant". mathworld.wolfram.com. Retrieved 2024-09-22. https://mathworld.wolfram.com/KhinchinsConstant.html
Aigner, Martin (2013). Markov's theorem and 100 years of the uniqueness conjecture. Cham: Springer. doi:10.1007/978-3-319-00888-2. ISBNÂ 978-3-319-00887-5. MRÂ 3098784. 978-3-319-00887-5
Huisman, Sander G. (2016). "Newer sums of three cubes". arXiv:1604.07746 [math.NT]. /wiki/ArXiv_(identifier)
Dobson, J. B. (1 April 2017). "On Lerch's formula for the Fermat quotient". p. 23. arXiv:1103.3907v6 [math.NT].{{cite arXiv}}: CS1 maint: overridden setting (link) /wiki/ArXiv_(identifier)
Ribenboim, P. (2006). Die Welt der Primzahlen. Springer-Lehrbuch (in German) (2nd ed.). Springer. pp. 242â243. doi:10.1007/978-3-642-18079-8. ISBN 978-3-642-18078-1. 978-3-642-18078-1
Mazur, Barry (1992). "The topology of rational points". Experimental Mathematics. 1 (1): 35â45. doi:10.1080/10586458.1992.10504244. S2CIDÂ 17372107. Archived from the original on 2019-04-07. Retrieved 2019-04-07. /wiki/Barry_Mazur
Kuperberg, Greg (1994). "Quadrisecants of knots and links". Journal of Knot Theory and Its Ramifications. 3: 41â50. arXiv:math/9712205. doi:10.1142/S021821659400006X. MRÂ 1265452. S2CIDÂ 6103528. /wiki/Greg_Kuperberg
A disproof has been announced, with a preprint made available on arXiv.[168] /wiki/ArXiv
Dimitrov, Vessilin; Gao, Ziyang; Habegger, Philipp (2021). "Uniformity in MordellâLang for curves" (PDF). Annals of Mathematics. 194: 237â298. arXiv:2001.10276. doi:10.4007/annals.2021.194.1.4. S2CIDÂ 210932420. https://hal.sorbonne-universite.fr/hal-03374335/file/Dimitrov%20et%20al.%20-%202021%20-%20Uniformity%20in%20Mordell%E2%80%93Lang%20for%20curves.pdf
Guan, Qi'an; Zhou, Xiangyu (2015). "A solution of an
L
2
{\displaystyle L^{2}}
extension problem with optimal estimate and applications". Annals of Mathematics. 181 (3): 1139â1208. arXiv:1310.7169. doi:10.4007/annals.2015.181.3.6. JSTORÂ 24523356. S2CIDÂ 56205818. /wiki/Xiangyu_Zhou
Merel, LoĂŻc (1996). ""Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]". Inventiones Mathematicae. 124 (1): 437â449. Bibcode:1996InMat.124..437M. doi:10.1007/s002220050059. MRÂ 1369424. S2CIDÂ 3590991. /wiki/Bibcode_(identifier)
Cohen, Stephen D.; Fried, Michael D. (1995). "Lenstra's proof of the CarlitzâWan conjecture on exceptional polynomials: an elementary version". Finite Fields and Their Applications. 1 (3): 372â375. doi:10.1006/ffta.1995.1027. MRÂ 1341953. /wiki/Michael_D._Fried
Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). "The Kadison-Singer problem in mathematics and engineering: A detailed account". In Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal (eds.). Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7â12, 2005, University of Central Florida, Florida. Contemporary Mathematics. Vol. 414. American Mathematical Society. pp. 299â355. doi:10.1090/conm/414/07820. ISBN 978-0-8218-3923-2. Retrieved 24 April 2015. 978-0-8218-3923-2
Mackenzie, Dana. "KadisonâSinger Problem Solved" (PDF). SIAM News. No. January/February 2014. Society for Industrial and Applied Mathematics. Archived (PDF) from the original on 23 October 2014. Retrieved 24 April 2015. https://www.siam.org/pdf/news/2123.pdf
Agol, Ian (2004). "Tameness of hyperbolic 3-manifolds". arXiv:math/0405568. /wiki/ArXiv_(identifier)
Kurdyka, Krzysztof; Mostowski, Tadeusz; ParusiĆski, Adam (2000). "Proof of the gradient conjecture of R. Thom". Annals of Mathematics. 152 (3): 763â792. arXiv:math/9906212. doi:10.2307/2661354. JSTORÂ 2661354. S2CIDÂ 119137528. /wiki/ArXiv_(identifier)
Moreira, Joel; Richter, Florian K.; Robertson, Donald (2019). "A proof of a sumset conjecture of ErdĆs". Annals of Mathematics. 189 (2): 605â652. arXiv:1803.00498. doi:10.4007/annals.2019.189.2.4. S2CIDÂ 119158401. /wiki/Annals_of_Mathematics
Stanley, Richard P. (1994). "A survey of Eulerian posets". In Bisztriczky, T.; McMullen, P.; Schneider, R.; Weiss, A. IviĂ⥠(eds.). Polytopes: abstract, convex and computational (Scarborough, ON, 1993). NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences. Vol. 440. Dordrecht: Kluwer Academic Publishers. pp. 301â333. MR 1322068.. See in particular p. 316. /wiki/MR_(identifier)
Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Archived from the original on 2019-02-16. Retrieved 2019-02-15. https://gilkalai.wordpress.com/2018/12/25/amazing-karim-adiprasito-proved-the-g-conjecture-for-spheres/
Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics. 176 (1): 383â412. arXiv:1006.2814. doi:10.4007/annals.2012.176.1.7. S2CIDÂ 15325169. /wiki/ArXiv_(identifier)
Ziegler, GĂŒnter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica. Documenta Mathematica Series. 6 (Extra Volume "Optimization Stories"): 75â85. doi:10.4171/dms/6/13. ISBNÂ 978-3-936609-58-5. 978-3-936609-58-5
Kauers, Manuel; Koutschan, Christoph; Zeilberger, Doron (2009-07-14). "Proof of Ira Gessel's lattice path conjecture". Proceedings of the National Academy of Sciences. 106 (28): 11502â11505. arXiv:0806.4300. Bibcode:2009PNAS..10611502K. doi:10.1073/pnas.0901678106. ISSNÂ 0027-8424. PMCÂ 2710637. /wiki/Manuel_Kauers
Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931â2012)". Notices of the AMS. 62 (4): 358. doi:10.1090/noti1247. ISSNÂ 1088-9477. OCLCÂ 34550461. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004. https://doi.org/10.1090%2Fnoti1247
Savchev, Svetoslav (2005). "Kemnitz' conjecture revisited". Discrete Mathematics. 297 (1â3): 196â201. doi:10.1016/j.disc.2005.02.018. https://doi.org/10.1016%2Fj.disc.2005.02.018
Green, Ben (2004). "The CameronâErdĆs conjecture". The Bulletin of the London Mathematical Society. 36 (6): 769â778. arXiv:math.NT/0304058. doi:10.1112/S0024609304003650. MRÂ 2083752. S2CIDÂ 119615076. /wiki/Ben_J._Green
"News from 2007". American Mathematical Society. AMS. 31 December 2007. Archived from the original on 17 November 2015. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-ErdĆs conjecture..." https://www.ams.org/news?news_id=155
Brown, Aaron; Fisher, David; Hurtado, Sebastian (2017-10-07). "Zimmer's conjecture for actions of SL(đ,â€)". arXiv:1710.02735 [math.DS]. /wiki/ArXiv_(identifier)
Xue, Jinxin (2014). "Noncollision Singularities in a Planar Four-body Problem". arXiv:1409.0048 [math.DS]. /wiki/ArXiv_(identifier)
Xue, Jinxin (2020). "Non-collision singularities in a planar 4-body problem". Acta Mathematica. 224 (2): 253â388. doi:10.4310/ACTA.2020.v224.n2.a2. S2CIDÂ 226420221. /wiki/Acta_Mathematica
Richard P Mann. "Known Historical Beggar-My-Neighbour Records". Retrieved 2024-02-10. https://richardpmann.com/beggar-my-neighbour-records.html
Bowditch, Brian H. (2006). "The angel game in the plane" (PDF). School of Mathematics, University of Southampton: warwick.ac.uk Warwick University. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18. http://homepages.warwick.ac.uk/~masgak/papers/bhb-angel.pdf
Kloster, Oddvar. "A Solution to the Angel Problem" (PDF). Oslo, Norway: SINTEF ICT. Archived from the original (PDF) on 2016-01-07. Retrieved 2016-03-18. https://web.archive.org/web/20160107125925/http://home.broadpark.no/~oddvark/angel/Angel.pdf
Mathe, Andras (2007). "The Angel of power 2 wins" (PDF). Combinatorics, Probability and Computing. 16 (3): 363â374. doi:10.1017/S0963548306008303 (inactive 1 November 2024). S2CIDÂ 16892955. Archived (PDF) from the original on 2016-10-13. Retrieved 2016-03-18.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link) http://homepages.warwick.ac.uk/~masibe/angel-mathe.pdf
Gacs, Peter (June 19, 2007). "THE ANGEL WINS" (PDF). Archived from the original (PDF) on 2016-03-04. Retrieved 2016-03-18. https://web.archive.org/web/20160304030433/http://www.cs.bu.edu/~gacs/papers/angel.pdf
Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2024). "An aperiodic monotile". Combinatorial Theory. 4 (1). doi:10.5070/C64163843. ISSNÂ 2766-1334. https://escholarship.org/uc/item/3317z9z9
Larson, Eric (2017). "The Maximal Rank Conjecture". arXiv:1711.04906 [math.AG]. /wiki/ArXiv_(identifier)
Kerz, Moritz; Strunk, Florian; Tamme, Georg (2018). "Algebraic K-theory and descent for blow-ups". Inventiones Mathematicae. 211 (2): 523â577. arXiv:1611.08466. Bibcode:2018InMat.211..523K. doi:10.1007/s00222-017-0752-2. MRÂ 3748313. S2CIDÂ 253741858. /wiki/Inventiones_Mathematicae
Song, Antoine. "Existence of infinitely many minimal hypersurfaces in closed manifolds" (PDF). www.ams.org. Retrieved 19 June 2021. ..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves.. https://www.ams.org/amsmtgs/2251_abstracts/1147-53-499.pdf
"Antoine Song | Clay Mathematics Institute". ...Building on work of CodĂĄ Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality https://www.claymath.org/people/antoine-song
Wolchover, Natalie (July 11, 2017). "Pentagon Tiling Proof Solves Century-Old Math Problem". Quanta Magazine. Archived from the original on August 6, 2017. Retrieved July 18, 2017. https://web.archive.org/web/20170806093353/https://www.quantamagazine.org/pentagon-tiling-proof-solves-century-old-math-problem-20170711/
Marques, Fernando C.; Neves, AndrĂ© (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179 (2): 683â782. arXiv:1202.6036. doi:10.4007/annals.2014.179.2.6. S2CID 50742102. /wiki/ArXiv_(identifier)
Guth, Larry; Katz, Nets Hawk (2015). "On the Erdos distinct distance problem in the plane". Annals of Mathematics. 181 (1): 155â190. arXiv:1011.4105. doi:10.4007/annals.2015.181.1.2. https://doi.org/10.4007%2Fannals.2015.181.1.2
Henle, Frederick V.; Henle, James M. "Squaring the Plane" (PDF). www.maa.org Mathematics Association of America. Archived (PDF) from the original on 2016-03-24. Retrieved 2016-03-18. http://www.ww.amc12.org/sites/default/files/pdf/pubs/SquaringThePlane.pdf
Agol, Ian (2004). "Tameness of hyperbolic 3-manifolds". arXiv:math/0405568. /wiki/ArXiv_(identifier)
Brock, Jeffrey F.; Canary, Richard D.; Minsky, Yair N. (2012). "The classification of Kleinian surface groups, II: The Ending Lamination Conjecture". Annals of Mathematics. 176 (1): 1â149. arXiv:math/0412006. doi:10.4007/annals.2012.176.1.1. /wiki/Yair_Minsky
Connelly, Robert; Demaine, Erik D.; Rote, GĂŒnter (2003). "Straightening polygonal arcs and convexifying polygonal cycles" (PDF). Discrete & Computational Geometry. 30 (2): 205â239. doi:10.1007/s00454-003-0006-7. MRÂ 1931840. S2CIDÂ 40382145. /wiki/Robert_Connelly
Faber, C.; Pandharipande, R. (2003). "Hodge integrals, partition matrices, and the
λ
g
{\displaystyle \lambda _{g}}
conjecture". Ann. of Math. 2. 157 (1): 97â124. arXiv:math.AG/9908052. doi:10.4007/annals.2003.157.97. /wiki/Rahul_Pandharipande
Shestakov, Ivan P.; Umirbaev, Ualbai U. (2004). "The tame and the wild automorphisms of polynomial rings in three variables". Journal of the American Mathematical Society. 17 (1): 197â227. doi:10.1090/S0894-0347-03-00440-5. MRÂ 2015334. /wiki/Doi_(identifier)
Hutchings, Michael; Morgan, Frank; RitorĂ©, Manuel; Ros, Antonio (2002). "Proof of the double bubble conjecture". Annals of Mathematics. Second Series. 155 (2): 459â489. arXiv:math/0406017. doi:10.2307/3062123. hdl:10481/32449. JSTOR 3062123. MR 1906593. /wiki/ArXiv_(identifier)
Hales, Thomas C. (2001). "The Honeycomb Conjecture". Discrete & Computational Geometry. 25: 1â22. arXiv:math/9906042. doi:10.1007/s004540010071. /wiki/Thomas_Callister_Hales
Teixidor i Bigas, Montserrat; Russo, Barbara (1999). "On a conjecture of Lange". Journal of Algebraic Geometry. 8 (3): 483â496. arXiv:alg-geom/9710019. Bibcode:1997alg.geom.10019R. ISSNÂ 1056-3911. MRÂ 1689352. /wiki/Montserrat_Teixidor_i_Bigas
Ullmo, E (1998). "PositivitĂ© et DiscrĂ©tion des Points AlgĂ©briques des Courbes". Annals of Mathematics. 147 (1): 167â179. arXiv:alg-geom/9606017. doi:10.2307/120987. JSTOR 120987. S2CID 119717506. Zbl 0934.14013. /wiki/ArXiv_(identifier)
Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics. 147 (1): 159â165. doi:10.2307/120986. JSTORÂ 120986. /wiki/Doi_(identifier)
Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Dat Tat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Ky, Vu; Zumkeller, Roland (2017). "A formal proof of the Kepler conjecture". Forum of Mathematics, Pi. 5: e2. arXiv:1501.02155. doi:10.1017/fmp.2017.1. https://doi.org/10.1017%2Ffmp.2017.1
Hales, Thomas C.; McLaughlin, Sean (2010). "The dodecahedral conjecture". Journal of the American Mathematical Society. 23 (2): 299â344. arXiv:math/9811079. Bibcode:2010JAMS...23..299H. doi:10.1090/S0894-0347-09-00647-X. https://doi.org/10.1090%2FS0894-0347-09-00647-X
Park, Jinyoung; Pham, Huy Tuan (2022-03-31). "A Proof of the Kahn-Kalai Conjecture". arXiv:2203.17207 [math.CO]. /wiki/ArXiv_(identifier)
DujmoviÄ, Vida; Eppstein, David; Hickingbotham, Robert; Morin, Pat; Wood, David R. (August 2021). "Stack-number is not bounded by queue-number". Combinatorica. 42 (2): 151â164. arXiv:2011.04195. doi:10.1007/s00493-021-4585-7. S2CIDÂ 226281691. /wiki/Vida_Dujmovi%C4%87
Huang, C.; Kotzig, A.; Rosa, A. (1982). "Further results on tree labellings". Utilitas Mathematica. 21: 31â48. MRÂ 0668845.. /wiki/Anton_Kotzig
Hartnett, Kevin (19 February 2020). "Rainbow Proof Shows Graphs Have Uniform Parts". Quanta Magazine. Retrieved 2020-02-29. https://www.quantamagazine.org/mathematicians-prove-ringels-graph-theory-conjecture-20200219/
Shitov, Yaroslav (1 September 2019). "Counterexamples to Hedetniemi's conjecture". Annals of Mathematics. 190 (2): 663â667. arXiv:1905.02167. doi:10.4007/annals.2019.190.2.6. JSTOR 10.4007/annals.2019.190.2.6. MR 3997132. S2CID 146120733. Zbl 1451.05087. Retrieved 19 July 2021. https://annals.math.princeton.edu/2019/190-2/p06
He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). "The Kelmans-Seymour conjecture I: Special separations". Journal of Combinatorial Theory, Series B. 144: 197â224. arXiv:1511.05020. doi:10.1016/j.jctb.2019.11.008. ISSNÂ 0095-8956. S2CIDÂ 29791394. http://www.sciencedirect.com/science/article/pii/S0095895619301224
He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). "The Kelmans-Seymour conjecture II: 2-Vertices in K4â". Journal of Combinatorial Theory, Series B. 144: 225â264. arXiv:1602.07557. doi:10.1016/j.jctb.2019.11.007. ISSNÂ 0095-8956. S2CIDÂ 220369443. http://www.sciencedirect.com/science/article/pii/S0095895619301212
He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-09). "The Kelmans-Seymour conjecture III: 3-vertices in K4â". Journal of Combinatorial Theory, Series B. 144: 265â308. arXiv:1609.05747. doi:10.1016/j.jctb.2019.11.006. ISSNÂ 0095-8956. S2CIDÂ 119625722. http://www.sciencedirect.com/science/article/pii/S0095895619301200
He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-19). "The Kelmans-Seymour conjecture IV: A proof". Journal of Combinatorial Theory, Series B. 144: 309â358. arXiv:1612.07189. doi:10.1016/j.jctb.2019.12.002. ISSNÂ 0095-8956. S2CIDÂ 119175309. http://www.sciencedirect.com/science/article/pii/S0095895619301248
Zang, Wenan; Jing, Guangming; Chen, Guantao (2019-01-29). "Proof of the GoldbergâSeymour Conjecture on Edge-Colorings of Multigraphs". arXiv:1901.10316v1 [math.CO]. /wiki/ArXiv_(identifier)
Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra. 43 (12): 5159â5167. doi:10.1080/00927872.2014.967398. S2CIDÂ 117651702. /wiki/Doi_(identifier)
Huh, June (2012). "Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs". Journal of the American Mathematical Society. 25 (3): 907â927. arXiv:1008.4749. doi:10.1090/S0894-0347-2012-00731-0. /wiki/June_Huh
Chalopin, JĂ©rĂ©mie; Gonçalves, Daniel (2009). "Every planar graph is the intersection graph of segments in the plane: extended abstract". In Mitzenmacher, Michael (ed.). Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 â June 2, 2009. ACM. pp. 631â638. doi:10.1145/1536414.1536500. /wiki/Doi_(identifier)
Aharoni, Ron; Berger, Eli (2009). "Menger's theorem for infinite graphs". Inventiones Mathematicae. 176 (1): 1â62. arXiv:math/0509397. Bibcode:2009InMat.176....1A. doi:10.1007/s00222-008-0157-3. /wiki/Ron_Aharoni
Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12. http://www.jpost.com/Home/Article.aspx?id=91431
Diestel, Reinhard (2005). "Minors, Trees, and WQO" (PDF). Graph Theory (Electronic Edition 2005 ed.). Springer. pp. 326â367. http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/preview/Ch12.pdf
Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin (2002). "The strong perfect graph theorem". Annals of Mathematics. 164: 51â229. arXiv:math/0212070. Bibcode:2002math.....12070C. doi:10.4007/annals.2006.164.51. S2CIDÂ 119151552. https://annals.math.princeton.edu/2006/164-1/p02
Klin, M. H., M. Muzychuk and R. Poschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and Association Schemes, American Math. Society, 2001.
Chen, Zhibo (1996). "Harary's conjectures on integral sum graphs". Discrete Mathematics. 160 (1â3): 241â244. doi:10.1016/0012-365X(95)00163-Q. https://www.researchgate.net/publication/220188021
Friedman, Joel (January 2015). "Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: with an Appendix by Warren Dicks" (PDF). Memoirs of the American Mathematical Society. 233 (1100): 0. doi:10.1090/memo/1100. ISSNÂ 0065-9266. S2CIDÂ 117941803. https://www.cs.ubc.ca/~jf/pubs/web_stuff/shnc_memoirs.pdf
Mineyev, Igor (2012). "Submultiplicativity and the Hanna Neumann conjecture". Annals of Mathematics. Second Series. 175 (1): 393â414. doi:10.4007/annals.2012.175.1.11. MRÂ 2874647. /wiki/Doi_(identifier)
Namazi, Hossein; Souto, Juan (2012). "Non-realizability and ending laminations: Proof of the density conjecture". Acta Mathematica. 209 (2): 323â395. doi:10.1007/s11511-012-0088-0. https://www.researchgate.net/publication/228365532
Pila, Jonathan; Shankar, Ananth; Tsimerman, Jacob; Esnault, HélÚne; Groechenig, Michael (2021-09-17). "Canonical Heights on Shimura Varieties and the André-Oort Conjecture". arXiv:2109.08788 [math.NT]. /wiki/ArXiv_(identifier)
Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". Annals of Mathematics. 184 (2): 633â682. arXiv:1512.01565. Bibcode:2015arXiv151201565B. doi:10.4007/annals.2016.184.2.7. hdl:1721.1/115568. S2CIDÂ 43929329. /wiki/ArXiv_(identifier)
Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv:1305.2897 [math.NT]. /wiki/ArXiv_(identifier)
Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv:1205.5252 [math.NT]. /wiki/ArXiv_(identifier)
Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv:1312.7748 [math.NT]. /wiki/ArXiv_(identifier)
Zhang, Yitang (2014-05-01). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121â1174. doi:10.4007/annals.2014.179.3.7. ISSNÂ 0003-486X. /wiki/Doi_(identifier)
"Bounded gaps between primes â Polymath Wiki". asone.ai. Archived from the original on 2020-12-08. Retrieved 2021-08-27. https://web.archive.org/web/20201208045925/https://asone.ai/polymath/index.php?title=Bounded_gaps_between_primes
Maynard, James (2015-01-01). "Small gaps between primes". Annals of Mathematics: 383â413. arXiv:1311.4600. doi:10.4007/annals.2015.181.1.7. ISSNÂ 0003-486X. S2CIDÂ 55175056. /wiki/ArXiv_(identifier)
Cilleruelo, Javier (2010). "Generalized Sidon sets". Advances in Mathematics. 225 (5): 2786â2807. doi:10.1016/j.aim.2010.05.010. hdl:10261/31032. S2CIDÂ 7385280. https://doi.org/10.1016%2Fj.aim.2010.05.010
Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009). "Serre's modularity conjecture (I)". Inventiones Mathematicae. 178 (3): 485â504. Bibcode:2009InMat.178..485K. CiteSeerXÂ 10.1.1.518.4611. doi:10.1007/s00222-009-0205-7. S2CIDÂ 14846347. /wiki/Bibcode_(identifier)
Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009). "Serre's modularity conjecture (II)". Inventiones Mathematicae. 178 (3): 505â586. Bibcode:2009InMat.178..505K. CiteSeerXÂ 10.1.1.228.8022. doi:10.1007/s00222-009-0206-6. S2CIDÂ 189820189. /wiki/Bibcode_(identifier)
"2011 Cole Prize in Number Theory" (PDF). Notices of the AMS. 58 (4): 610â611. ISSNÂ 1088-9477. OCLCÂ 34550461. Archived (PDF) from the original on 2015-11-06. Retrieved 2015-11-12. https://www.ams.org/notices/201104/rtx110400610p.pdf
"Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS. 57 (5): 642â643. May 2010. ISSNÂ 1088-9477. OCLCÂ 34550461. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbersâa result now known as the GreenâTao theorem. https://www.ams.org/notices/201005/rtx100500642p.pdf
MetsĂ€nkylĂ€, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society. 41 (1): 43â57. doi:10.1090/s0273-0979-03-00993-5. ISSN 0273-0979. Archived (PDF) from the original on 4 March 2016. Retrieved 13 November 2015. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda MihÄilescu. https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf
Croot, Ernest S. III (2000). Unit Fractions. Ph.D. thesis. University of Georgia, Athens. Croot, Ernest S. III (2003). "On a coloring conjecture about unit fractions". Annals of Mathematics. 157 (2): 545â556. arXiv:math.NT/0311421. Bibcode:2003math.....11421C. doi:10.4007/annals.2003.157.545. S2CIDÂ 13514070. /wiki/Ernest_S._Croot_III
Lafforgue, Laurent (1998). "Chtoucas de Drinfeld et applications" [DrinfelÊčd shtukas and applications]. Documenta Mathematica (in French). II: 563â570. ISSNÂ 1431-0635. MRÂ 1648105. Archived from the original on 2018-04-27. Retrieved 2016-03-18. http://www.math.uni-bielefeld.de/documenta/xvol-icm/07/Lafforgue.MAN.html
Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics. 141 (3): 443â551. CiteSeerXÂ 10.1.1.169.9076. doi:10.2307/2118559. JSTORÂ 2118559. OCLCÂ 37032255. Archived (PDF) from the original on 2011-05-10. Retrieved 2016-03-06. /wiki/Andrew_Wiles
Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics. 141 (3): 553â572. CiteSeerXÂ 10.1.1.128.531. doi:10.2307/2118560. JSTORÂ 2118560. OCLCÂ 37032255. Archived from the original on 16 September 2000. /wiki/Richard_Taylor_(mathematician)
Lee, Choongbum (2017). "Ramsey numbers of degenerate graphs". Annals of Mathematics. 185 (3): 791â829. arXiv:1505.04773. doi:10.4007/annals.2017.185.3.2. S2CIDÂ 7974973. /wiki/ArXiv_(identifier)
Lamb, Evelyn (26 May 2016). "Two-hundred-terabyte maths proof is largest ever". Nature. 534 (7605): 17â18. Bibcode:2016Natur.534...17L. doi:10.1038/nature.2016.19990. PMIDÂ 27251254. https://doi.org/10.1038%2Fnature.2016.19990
Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016). "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". In Creignou, N.; Le Berre, D. (eds.). Theory and Applications of Satisfiability Testing â SAT 2016. Lecture Notes in Computer Science. Vol. 9710. Springer, [Cham]. pp. 228â245. arXiv:1605.00723. doi:10.1007/978-3-319-40970-2_15. ISBN 978-3-319-40969-6. MR 3534782. S2CID 7912943. 978-3-319-40969-6
Linkletter, David (27 December 2019). "The 10 Biggest Math Breakthroughs of 2019". Popular Mechanics. Retrieved 20 June 2021. https://www.popularmechanics.com/science/math/g30346822/biggest-math-breakthroughs-2019/
Piccirillo, Lisa (2020). "The Conway knot is not slice". Annals of Mathematics. 191 (2): 581â591. doi:10.4007/annals.2020.191.2.5. S2CIDÂ 52398890. https://annals.math.princeton.edu/2020/191-2/p05
Klarreich, Erica (2020-05-19). "Graduate Student Solves Decades-Old Conway Knot Problem". Quanta Magazine. Retrieved 2022-08-17. /wiki/Erica_Klarreich
Agol, Ian (2013). "The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)" (PDF). Documenta Mathematica. 18: 1045â1087. arXiv:1204.2810v1. doi:10.4171/dm/421. S2CIDÂ 255586740. https://www.math.uni-bielefeld.de/documenta/vol-18/33.pdf
Brendle, Simon (2013). "Embedded minimal tori in
S
3
{\displaystyle S^{3}}
and the Lawson conjecture". Acta Mathematica. 211 (2): 177â190. arXiv:1203.6597. doi:10.1007/s11511-013-0101-2. /wiki/Simon_Brendle
Kahn, Jeremy; Markovic, Vladimir (2015). "The good pants homology and the Ehrenpreis conjecture". Annals of Mathematics. 182 (1): 1â72. arXiv:1101.1330. doi:10.4007/annals.2015.182.1.1. /wiki/Jeremy_Kahn
Austin, Tim (December 2013). "Rational group ring elements with kernels having irrational dimension". Proceedings of the London Mathematical Society. 107 (6): 1424â1448. arXiv:0909.2360. Bibcode:2009arXiv0909.2360A. doi:10.1112/plms/pdt029. S2CIDÂ 115160094. /wiki/ArXiv_(identifier)
Lurie, Jacob (2009). "On the classification of topological field theories". Current Developments in Mathematics. 2008: 129â280. arXiv:0905.0465. Bibcode:2009arXiv0905.0465L. doi:10.4310/cdm.2008.v2008.n1.a3. S2CIDÂ 115162503. /wiki/ArXiv_(identifier)
"Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Archived from the original on March 22, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. http://www.claymath.org/sites/default/files/millenniumprizefull.pdf
"Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Archived from the original on March 22, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman. http://www.claymath.org/sites/default/files/millenniumprizefull.pdf
Morgan, John; Tian, Gang (2008). "Completion of the Proof of the Geometrization Conjecture". arXiv:0809.4040 [math.DG]. /wiki/ArXiv_(identifier)
Rudin, M.E. (2001). "Nikiel's Conjecture". Topology and Its Applications. 116 (3): 305â331. doi:10.1016/S0166-8641(01)00218-8. /wiki/Mary_Ellen_Rudin
Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate. https://www.researchgate.net/publication/220032558
Tao, Terence (2015). "The ErdĆs discrepancy problem". arXiv:1509.05363v5 [math.CO]. /wiki/Terence_Tao
Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). "Proof of the umbral moonshine conjecture". Research in the Mathematical Sciences. 2 (1): 26. arXiv:1503.01472. Bibcode:2015arXiv150301472D. doi:10.1186/s40687-015-0044-7. S2CIDÂ 43589605. https://doi.org/10.1186%2Fs40687-015-0044-7
Cheeger, Jeff; Naber, Aaron (2015). "Regularity of Einstein Manifolds and the Codimension 4 Conjecture". Annals of Mathematics. 182 (3): 1093â1165. arXiv:1406.6534. doi:10.4007/annals.2015.182.3.5. https://doi.org/10.4007%2Fannals.2015.182.3.5
Wolchover, Natalie (March 28, 2017). "A Long-Sought Proof, Found and Almost Lost". Quanta Magazine. Archived from the original on April 24, 2017. Retrieved May 2, 2017. https://www.quantamagazine.org/20170328-statistician-proves-gaussian-correlation-inequality/
Newman, Alantha; Nikolov, Aleksandar (2011). "A counterexample to Beck's conjecture on the discrepancy of three permutations". arXiv:1104.2922 [cs.DM]. /wiki/ArXiv_(identifier)
Voevodsky, Vladimir (1 July 2011). "On motivic cohomology with Z/l-coefficients" (PDF). annals.math.princeton.edu. Princeton, NJ: Princeton University. pp. 401â438. Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18. https://annals.math.princeton.edu/wp-content/uploads/annals-v174-n1-p11-p.pdf
Geisser, Thomas; Levine, Marc (2001). "The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky". Journal fĂŒr die Reine und Angewandte Mathematik. 2001 (530): 55â103. doi:10.1515/crll.2001.006. MRÂ 1807268. /wiki/Doi_(identifier)
Kahn, Bruno. "Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry" (PDF). webusers.imj-prg.fr. Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18. https://webusers.imj-prg.fr/~bruno.kahn/preprints/kcag.pdf
"motivic cohomology â MilnorâBlochâKato conjecture implies the Beilinson-Lichtenbaum conjecture â MathOverflow". Retrieved 2016-03-18. https://mathoverflow.net/q/87162
Mattman, Thomas W.; Solis, Pablo (2009). "A proof of the Kauffman-Harary Conjecture". Algebraic & Geometric Topology. 9 (4): 2027â2039. arXiv:0906.1612. Bibcode:2009arXiv0906.1612M. doi:10.2140/agt.2009.9.2027. S2CIDÂ 8447495. /wiki/ArXiv_(identifier)
Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics. 175 (3): 1127â1190. arXiv:0910.5501. doi:10.4007/annals.2012.175.3.4. https://doi.org/10.4007%2Fannals.2012.175.3.4
Lu, Zhiqin (September 2011) [2007]. "Normal Scalar Curvature Conjecture and its applications". Journal of Functional Analysis. 261 (5): 1284â1308. arXiv:0711.3510. doi:10.1016/j.jfa.2011.05.002. https://doi.org/10.1016%2Fj.jfa.2011.05.002
Dencker, Nils (2006). "The resolution of the NirenbergâTreves conjecture" (PDF). Annals of Mathematics. 163 (2): 405â444. doi:10.4007/annals.2006.163.405. S2CIDÂ 16630732. Archived (PDF) from the original on 2018-07-20. Retrieved 2019-04-07. /wiki/Nils_Dencker
"Research Awards". Clay Mathematics Institute. Archived from the original on 2019-04-07. Retrieved 2019-04-07. https://www.claymath.org/research
Lewis, A. S.; Parrilo, P. A.; Ramana, M. V. (2005). "The Lax conjecture is true". Proceedings of the American Mathematical Society. 133 (9): 2495â2499. doi:10.1090/S0002-9939-05-07752-X. MRÂ 2146191. S2CIDÂ 17436983. /wiki/Doi_(identifier)
"Fields Medal â NgĂŽ BáșŁo ChĂąu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Archived from the original on 24 September 2015. Retrieved 2015-11-12. NgĂŽ BáșŁo ChĂąu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods. http://www.icm2010.in/prize-winners-2010/fields-medal-ngo-bao-chau
Voevodsky, Vladimir (2003). "Reduced power operations in motivic cohomology". Publications MathĂ©matiques de l'IHĂS. 98: 1â57. arXiv:math/0107109. CiteSeerX 10.1.1.170.4427. doi:10.1007/s10240-003-0009-z. S2CID 8172797. Archived from the original on 2017-07-28. Retrieved 2016-03-18. http://archive.numdam.org/item/PMIHES_2003__98__1_0/
Baruch, Ehud Moshe (2003). "A proof of Kirillov's conjecture". Annals of Mathematics. Second Series. 158 (1): 207â252. doi:10.4007/annals.2003.158.207. MRÂ 1999922. /wiki/Doi_(identifier)
Haas, Bertrand (2002). "A Simple Counterexample to Kouchnirenko's Conjecture" (PDF). BeitrĂ€ge zur Algebra und Geometrie. 43 (1): 1â8. Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18. https://www.emis.de/journals/BAG/vol.43/no.1/b43h1haa.pdf
Haiman, Mark (2001). "Hilbert schemes, polygraphs and the Macdonald positivity conjecture". Journal of the American Mathematical Society. 14 (4): 941â1006. doi:10.1090/S0894-0347-01-00373-3. MRÂ 1839919. S2CIDÂ 9253880. /wiki/Doi_(identifier)
Auscher, Pascal; Hofmann, Steve; Lacey, Michael; McIntosh, Alan; Tchamitchian, Ph. (2002). "The solution of the Kato square root problem for second order elliptic operators on
R
n
{\displaystyle \mathbb {R} ^{n}}
". Annals of Mathematics. Second Series. 156 (2): 633â654. doi:10.2307/3597201. JSTORÂ 3597201. MRÂ 1933726. /wiki/Doi_(identifier)
Barbieri-Viale, Luca; Rosenschon, Andreas; Saito, Morihiko (2003). "Deligne's Conjecture on 1-Motives". Annals of Mathematics. 158 (2): 593â633. arXiv:math/0102150. doi:10.4007/annals.2003.158.593. https://doi.org/10.4007%2Fannals.2003.158.593
Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001). "On the modularity of elliptic curves over Q: wild 3-adic exercises". Journal of the American Mathematical Society. 14 (4): 843â939. doi:10.1090/S0894-0347-01-00370-8. ISSNÂ 0894-0347. MRÂ 1839918. /wiki/Journal_of_the_American_Mathematical_Society
Luca, Florian (2000). "On a conjecture of ErdĆs and Stewart" (PDF). Mathematics of Computation. 70 (234): 893â897. Bibcode:2001MaCom..70..893L. doi:10.1090/s0025-5718-00-01178-9. Archived (PDF) from the original on 2016-04-02. Retrieved 2016-03-18. https://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01178-9/S0025-5718-00-01178-9.pdf
Atiyah, Michael (2000). "The geometry of classical particles". In Yau, Shing-Tung (ed.). Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer. Surveys in Differential Geometry. Vol. 7. Somerville, Massachusetts: International Press. pp. 1â15. doi:10.4310/SDG.2002.v7.n1.a1. MR 1919420. /wiki/Michael_Atiyah