Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Lagerstätte
Sedimentary deposit that exhibits extraordinary fossils with exceptional preservation

A Fossil-Lagerstätte (German: [ˈlaːɡɐˌʃtɛtə], from Lager 'storage, lair' Stätte 'place'; plural Lagerstätten) is a sedimentary deposit that exhibits extraordinary fossils with exceptional preservation—sometimes including preserved soft tissues. These formations may have resulted from carcass burial in an anoxic environment with minimal bacteria, thus delaying the decomposition of both gross and fine biological features until long after a durable impression was created in the surrounding matrix. Fossil-Lagerstätten spans geological time from the Neoproterozoic era to the present.

Worldwide, some of the best examples of near-perfect fossilization are the Cambrian Maotianshan shales and Burgess Shale, the Ordovician Soom Shale, the Silurian Waukesha Biota, the Devonian Hunsrück Slates and Gogo Formation, the Carboniferous Mazon Creek, the Triassic Madygen Formation, the Jurassic Posidonia Shale and Solnhofen Limestone, the Cretaceous Yixian, Santana, & Agua Nueva formations and the Tanis Fossil Site, the Eocene Fur Formation, Green River Formation, Messel Formation & Monte Bolca, the Miocene Foulden Maar and Ashfall Fossil Beds, the Pliocene Gray Fossil Site, and the Pleistocene Naracoorte Caves & La Brea Tar Pits.

Related Image Collections Add Image
We don't have any YouTube videos related to Lagerstätte yet.
We don't have any PDF documents related to Lagerstätte yet.
We don't have any Books related to Lagerstätte yet.
We don't have any archived web articles related to Lagerstätte yet.

Types

Palaeontologists distinguish two kinds:12

  1. Konzentrat-Lagerstätten (concentration Lagerstätten) are deposits with a particular "concentration" of disarticulated organic hard parts, such as a bone bed. These Lagerstätten are less spectacular than the more famous Konservat-Lagerstätten. Their contents invariably display a large degree of time averaging, as the accumulation of bones in the absence of other sediment takes some time. Deposits with a high concentration of fossils that represent an in situ community, such as reefs or oyster beds, are not considered Lagerstätten.
  2. Konservat-Lagerstätten (conservation Lagerstätten) are deposits known for the exceptional preservation of fossilized organisms or traces. The individual taphonomy of the fossils varies with the sites. Conservation Lagerstätten are crucial in elucidating important moments in the history and evolution of life. For example, the Burgess Shale of British Columbia is associated with the Cambrian explosion, and the Solnhofen limestone with the earliest known bird, Archaeopteryx.

Preservation

Konservat-Lagerstätten preserve lightly sclerotized and soft-bodied organisms or traces of organisms that are not otherwise preserved in the usual shelly and bony fossil record; thus, they offer more complete records of ancient biodiversity and behavior and enable some reconstruction of the palaeoecology of ancient aquatic communities. In 1986, Simon Conway Morris calculated only about 14% of genera in the Burgess Shale had possessed biomineralized tissues in life. The affinities of the shelly elements of conodonts were mysterious until the associated soft tissues were discovered near Edinburgh, Scotland, in the Granton Lower Oil Shale of the Carboniferous.3 Information from the broader range of organisms found in Lagerstätten have contributed to recent phylogenetic reconstructions of some major metazoan groups. Lagerstätten seem to be temporally autocorrelated, perhaps because global environmental factors such as climate might affect their deposition.4

A number of taphonomic pathways may produce Konservat-Lagerstätten:5

The identification of a fossil site as a Konservat-Lagerstätte may be based on a number of different factors which constitute "exceptional preservation". These may include the completeness of specimens, soft tissue preservation, fine-scale detail, taxonomic richness, distinctive taphonomic pathways (often multiple at the same site), the extent of the fossil layer in time and space, and particular sediment facies encouraging preservation.6

Notable Lagerstätten

This is a dynamic list and may never be able to satisfy particular standards for completeness. You can help by adding missing items with reliable sources.

See also: List of fossil sites

The world's major Lagerstätten include:

Precambrian

Site(s)AgeLocationSignificanceNotable fossils/organisms
Francevillian B Formation2140-2080 MaFranceville, GabonPossibly preserves the earliest macroscopic eukaryotes,78 however these may instead be pseudofossils.910
Chuanlinggou Formation1630 Ma11Yan Mountains, North ChinaPreserves the first definitive multicellular eukaryotes in the form of Qingshania,12 Tawuia and Changchengia.13
Chitrakoot Formation1600 MaVindhya Range, IndiaPreserves earliest red algae, Rafatazmia and Ramathallus14
Gaoyuzhuang Formation1588.8±6.5 Ma15Yan Mountains, North ChinaPreserves some of the first algae such as Tuanshanzia and Grandilingulata,16 alongside a diverse microbiota including possible fungi.17
Volyn biota1500 MaZhytomyr Oblast, UkrainePossibly one of the first fossil sites of the deep biosphere.1819
Hunting Formation1200 MaSomerset Island, CanadaShallow-water Mesoproterozoic deposits, containing multiple genera of algae2021 including Bangiomorpha.
Nonesuch Formation1083-1070 MaMichigan, USAAn oxygenated Mesoproterozoic lake22 containing exceptionally preserved limnic microbes.23

Lakhanda Group

1030-1000 Ma

Uchur-Maya Depression, Russia

A site preserving a Mesoproterozoic community dominated by anaerobic bacteria.24 The lagerstätte contains evidence of trophic interactions from the Boring Billion.2526

Bitter Springs

1000–850 Ma

South Australia

Preserved fossils include cyanobacteria microfossils.

Diabaig Formation994 ± 48 Ma27ScotlandA freshwater environment preserving phosphatic microfossils,28 which represent some of the oldest known non-marine eukaryotes.29
Dolores Creek Formation950 MaYukon, CanadaAn Early Tonian site containing pyritised macroalgal fossils.30

Svanbergfjellet Formation

791.1±4.9 Ma31

Svalbard

A site preserving some of the earliest green algae, such as Proterocladus, alongside various enigmatic eukaryotes like Pseudotawuia.32

Chichkan Lagerstätte

775 Ma

Kazakhstan

A site from the transition between the prokaryote-dominated biota of the Early Neoproterozoic and the eukaryote-dominated biota of the Late Neoproterozoic and Phanerozoic.33

Doushantuo Formation

600–555 Ma

Guizhou Province, China

Spans the poorly understood interval between the end of the Cryogenian period and the late Ediacaran Avalon explosion.

Portfjeld Formation570 MaNorth GreenlandA Middle Ediacaran biota from the continent of Laurentia exhibiting Doushantuo-type preservation.34

Mistaken Point

565 Ma

Newfoundland, Canada

This site contains one of the most diverse and well-preserved collections of Precambrian fossils.

Itajai Biota563 MaBrazilAn Ediacaran lagerstatte preserved by volcanism.35

Ediacara Hills

555 Ma

South Australia

The type location the Ediacaran period, and has preserved a significant amount of fossils from that time.

Shibantan Lagerstätte551-543 MaHubei, ChinaA terminal Ediacaran fossil assemblage preserving life forms living just before the Proterozoic-Phanerozoic transition.36
Gaojiashan Lagerstätte551-541 MaShaanxi, ChinaA lagerstätte documenting tube growth patterns of Cloudina.37
Jiucheng Member551-543 MaYunnan, ChinaA latest Ediacaran macrofossil biota dominated by giant, unbranching thallophytes.38

Khatyspyt Lagerstätte

544 Ma

Yakutia, Russia

A Late Ediacaran lagerstätte preserving an Avalon-type biota.39

Bernashivka open pit? (Upper Vendian)Vinnytsia Oblast, UkraineA Late Ediacaran lagerstätte with numerous soft-bodied animals, algae, microfossils, bacteria, and fungi, comprising a number of different geological formations.40

Cambrian

Site(s)AgeLocationSignificanceNotable fossils/organisms
ZhangjiagouFortunianShaanxi, ChinaA lagerstätte from the earliest Cambrian notable for its fossils of cnidarians,41 cycloneuralians,4243 and the basal ecdysozoan Saccorhytus coronarius.44

Maotianshan Shales (Chengjiang)

518 Ma

Yunnan, China

The preservation of an extremely diverse faunal assemblage renders the Maotianshan Shales the world's most important formation for understanding the evolution of early multi-cellular life. Microscopic animals like Yicaris are preserved here, showing the presence of an Orsten-type deposit within the formation.45

Qingjiang biota

518 Ma

Hubei, China

This site is particularly notable due to both the large proportion of new taxa represented (approximately 53% of the specimens), and the notable volume of soft-body tissue preservation.

Sirius Passet

523-518 Ma

Greenland

A site known for its fauna, and that they were most likely preserved by a death mask. It is a part of the larger Buen Formation, and has a fauna similar to the Maotianshan shales.

Xiaoshiba LagerstätteCambrian Stage 3Yunnan, ChinaA site known for its detailed preservation of Early Cambrian macroalgae,46 alongside fossils of Omnidens.47
Poleta Formation519-518 MaNevada, USAThe middle member of the formation preserves the Indian Springs Lagerstätte, one of the oldest such sites from former Laurentia. This site preserves a diversity of mineralized organisms such as trilobites and brachiopods, but also non-mineralized remains such as sponges, algae, and soft-bodied arthropods.48

Sinsk Algal Lens

518 Ma

Yakutia, Russia

One of the oldest known Cambrian lagerstätten. The fauna of this site is unique, as it seems that they were adapted to living in dysaerobic conditions.49

Guanshan Biota

Cambrian Stage 4

Eastern Yunnan, China

A relatively diverse lagerstätte within the Wulongqing Formation, between the more famous Maotianshan Shales and Burgess Shale in age, alongside having both taxa from the previous two formations and completely new genera/species preserved here. It is also unusual for being quite shallow and having a brachiopod-dominated fauna.50

Cranbrook LagerstätteCambrian Stage 4British ColumbiaOne of the oldest Burgess Shale-type biotas of North America.51
Tatelt Formation515 MaHigh Atlas, MoroccoA layer in this formation has produced some of the most well-preserved trilobites ever discovered, with preserved internal organs, feeding structures, and articulated appendages. The trilobites were likely rapidly buried and preserved by a volcanic eruption.52

Emu Bay Shale

513 Ma

South Australia

Noted soft tissue mineralization, most often of blocky apatite or fibrous calcium carbonate, including the oldest phosphatized muscle tissue.

Parker Slate513-511 MaVermont, USA Burgess Shale-type biota with rare but exceptionally preserved soft-bodied animals. The earliest Burgess Shale-type biota to be described, being documneted 25 years before the Burgess Shale itself.53

Kaili Formation

513–501 Ma

Guizhou, China

The middle part of the Kaili Formation, the Oryctocephalus indicus Zone, contains a Burgess Shale-type lagerstätte with many well-preserved fossils known collectively as the Kaili Biota.

Murero Lagerstätte

511-503 Ma

Spain

Thanks to the paleontological content, mainly trilobites, fourteen biozones have been established, the most precise biozonation for this time interval in the world. It also records in detail the so-called Valdemiedes event, the mass extinction episode at the end of the Lower Cambrian.54

Blackberry Hill

~510–500 Ma

Central Wisconsin, US

This site preserves some of the oldest evidence of multicellular life walking out of the ocean, and onto dry land (in the form of large mollusks and euthycarcinoid arthropods). Other notable fossils include stranded scyphozoans, and some of the oldest true crustaceans (in the form of phyllocarids).
Henson Gletscher FormationWuliuanNorth GreenlandA phosphatised lagerstätte preserving hatching priapulid larvae, pentastomids55 and abundant bradoriid and phosphatocopid arthropods.56

Burgess Shale

508 Ma

British Columbia, Canada

One of the most famous fossil localities in the world. It is famous for the exceptional preservation of the soft parts of its fossils. At 508 million years old (middle Cambrian), it is one of the earliest fossil beds containing soft-part imprints.

Duchesnay Formation

~505 Ma?

Southeastern British Columbia

Similar to the Burgess Shale above (both formations even have similar depositional environments next to escarpments), but seemingly lower-diversity and slightly younger. Several organisms are shared between both formations, although the Duchesnay Formation preserves several new genera. Brine pools are also preserved.57

Spence Shale

507 Ma

Northeastern Utah, Southeastern Idaho, US

A site known for its abundant Cambrian trilobites and the preservation of Burgess Shale-type fossils. The type locality for this site is Spence Gulch in southeastern Idaho.

Linyi Lagerstätte

504 Ma

Shandong, China

A lagerstätte recognised for its exceptional preservation of arthropod limbs, intestines, and eyes.58

Ravens Throat River LagerstätteDrumianNorthwest TerritoriesA Burgess Shale-type biota coeval in age with the more famous Wheeler Shale and Marjum Formation.59

Wheeler Shale (House Range)

504 Ma

Western Utah, US

A world-famous locality known for its prolific agnostid and Elrathia kingii trilobite remains. Varied soft bodied organisms are also locally preserved, including Naraoia, Wiwaxia and Hallucigenia.

Marjum Formation

502 Ma

Western Utah, US

A site known for its occasional preservation of soft-bodied tissue, and diverse assemblage.

Weeks Formation

500 Ma

Western Utah, US

A site that is dominated by trilobites and brachiopods, but also comprising various soft-bodied organisms, such as Falcatamacaris.

Kinnekulle Orsten and Alum Shale

500 Ma

Sweden

The Orsten sites reveals the oldest well-documented benthic meiofauna in the fossil record. Fossils such as microfossils of arthropods like free-living pentastomids are known. Multiple "Orsten-type" lagerstätten are also known from other countries.

Ordovician

Site(s)AgeLocationSignificanceNotable fossils/organisms

Fezouata Formation

about 485 Ma

Draa Valley, Morocco

It was deposited in a marine environment, and is known for its exceptionally preserved fossils, filling an important preservational window beyond the earlier and more common Cambrian Burgess shale-type deposits.

Cabrieres biotaFloianMontagne Noire, FranceA polar marine ecosystem from the Early Ordovician that likely served as a refuge from the high temperatures of the epoch.60

Liexi fauna

About 470 Ma (early-middle Floian)

Hunan Province, China

Preserves Early Ordovician fauna with soft tissue, includes not only Cambrian relics but also taxa originated during Ordovician.61

Castle Bank

About 461 Ma

Llandrindod Wells, Wales

A unique environment deposited during the middle Ordovician that possibly shows iconic groups from Cambrian lagerstättes, like Opabiniids and Megacheirans, survived for longer than what was thought.

Douglas Dam Member62

460 Ma

Tennessee, US

Low-diversity assemblage of arthropod fossils, which are preserved well because of volcanic ash.

Winneshiek Shale

460 Ma

Decorah, Iowa

A Middle Ordovician site confined to a large impact Crater that is known for exceptionally exquisite preservation of conodonts, bivalved arthropods, and the earliest eurypterids in the fossil record.63

Beecher's Trilobite Bed

460? Ma

New York, US

Noted exceptionally preserved trilobites with soft tissue preserved by pyrite replacement. Pyritisation allows the use of X-rays to study fine detail of preserved soft body parts.

Harding Sandstone64

? (Sandbian)

Colorado, US

Although preservation is not excellent, this lagoonal site provides early vertebrate fossils such as Astraspis and Eriptychius.

Walcott-Rust Quarry

about 455? Ma

New York, US

This site is an excellent example of an obrution (rapid burial or "smothered") Lagerstätte. Unique preservation of trilobite appendages resulted from early cementation of the surrounding rock and spar filling of the interior cavity of the appendages.

Big hill Lagerstätteabout 450? MyaMichigan, USA site known for its preservation of soft-bodied medusae (jellyfish), as well as linguloid brachiopods, algae, and arthropods (namely chasmataspidids, leperditid ostracods, and eurypterids).

Brechin Lagerstätte

450 Ma

Ontario, Canada

Known for preserving one of the most diverse crinoid fauna of the Katian.65

Soom Shale

450? Ma

South Africa

Known for its remarkable preservation of soft-tissue in fossil material. Deposited in still waters, the unit lacks bioturbation, perhaps indicating anoxic conditions.

Tafilalt Biota

? (Sandbian-middle Katian)

Tafilalt, Morocco

Known from range of non-biomineralised and soft-bodied organisms in polar environment.66

Cat Head Member67

? (middle Katian)

Manitoba, Canada

Fossils like algae, conulariids and trilobites are known from this site.

Vauréal Formation68

Katian

Anticosti Island, Quebec

Preserves earliest known acoelomorphs, nemerteans, nematodes and flatworms in the fossil record

Georgian Bay Formation69

449-445.6 Ma

Manitoulin District, Canada

Low-diversity assemblage of arthropod fossils.

William Lake (Stony Mountain Formation)70

445 Ma

Manitoba, Canada

Well-preserved fossils like jellyfish, xiphosurans, sea spiders are known from this site, it is important since many of the fossils are unknown in other Ordovician sites.

Airport Cove71

445 Ma

Manitoba, Canada

Fossils like eurypterids, algae and xiphosurans are preserved in this site.

Silurian

Site(s)AgeLocationSignificanceNotable fossils/organisms

Kalana Lagerstätte

~440 MaAeronian

Estonia

Known for well preserved fossils of algae and crinoids,72 along with an osteostracan fossilised via an extremely unusual carbonaceous mode of preservation that was previously unknown among vertebrates.73

Chongqing Lagerstätte (Huixingshao Formation)74

436 Ma

Chongqing, China

This site preserved complete fossils of earliest jawed vertebrates, as well as some galeaspids and eurypterids.

Waukesha Biota (Brandon Bridge Formation)

~435 MaEarly Silurian

Wisconsin, US

Well-studied site known for the exceptional preservation of its diverse, soft-bodied and lightly skeletonized fauna, includes many major taxa found nowhere else in strata of similar age. It was one of the first fossil sites with soft bodied preservation known to science.

Herefordshire Lagerstätte (Coalbrookdale Formation)

~430 Ma

Herefordshire, UK

Known for the well-preserved fossils of various invertebrate animals many of which are in their three-dimensional structures. Fossils are preserved within volcanic ash, because of that sometimes this site has been compared to Pompeii.75 Some of the fossils are regarded as earliest evidences and evolutionary origin of some of the major groups of modern animals.

Eramosa Lagerstätte

~425 Ma

Ontario & New York (state)

Known for preservation of both hard and soft bodied organisms in great detail, including early scorpions, eurypterids, agnathan vertebrates, and several other species.

Bertie Group

422.9-416 Ma

Ontario & New York State

This limestone have produced thousands of fossil eurypterids, such as giant Acutiramus and well-known Eurypterus, as well as other fauna like scorpions and fish.

Tonoloway Formation76

~420 Ma

Pennsylvania, US

Known from exceptionally preserved mass assemblage of Eurypterus, the most abundant eurypterid in the fossil record.

Rochester Shale

415 Ma77

New York, US and Ontario, Canada

Echinoderms (such as crinoids) and trilobites are known from Lewiston Member in this shale.

Devonian

Site(s)AgeLocationSignificanceNotable fossils/organisms
Ditton GroupLochkovianWales, UKA wildfire-derived lagerstätte containing pyrolysis products of ancient wildfires.7879
Rhynie chert400 MaScotland, UKThe Rhynie chert contains exceptionally preserved plant, fungus, lichen and animal material (euthycarcinoids, branchiopods, arachnids, hexapods, etc) preserved in place by an overlying volcanic deposit and hot springs. As well as one of the first known fully terrestrial ecosystems.
Waxweiler Lagerstätte (Klerf Formation)409-392 MaEifel, GermanyWaxweiler Lagerstätte is known from well-preserved fossils of chelicerates, giant claw of Jaekelopterus rhenaniae shows the largest arthropod ever known.
Heckelmann Mill395 MaRhineland-Palatinate, GermanyHeckelmann Mill preserves well preserved rhinocaridid archaeostracan phyllocarids,80 along with exceptionally abundant crinoid holdfasts from the late Emsian.81
Hunsrück Slates (Bundenbach)390 MaRheinland-Pfalz, GermanyThe Hunsrück slates are one of the few marine Devonian lagerstätte having soft tissue preservation, and in many cases fossils are coated by a pyritic surface layer.
Gogo Formation380 Ma (Frasnian)Western AustraliaThe fossils of the Gogo Formation display three-dimensional soft-tissue preservation of tissues as fragile as nerves and embryos with umbilical cords. Over fifty species of fish have been described from the formation, and arthropods.
Miguasha National Park (Escuminac Formation)370 MaQuébec, CanadaSome of the fish, fauna, and spore fossils found at Miguasha are rare and ancient species. For example, Eusthenopteron is sarcopterygian that shares characters with early tetrapods.
Kowala Lagerstätte~368 MaŚwiętokrzyskie Voivodeship, PolandA Late Devonian site known for its fossils of non-biomineralised algae and arthropods.82
Maïder Basin368 Ma (for Thylacocephalan Layer)Anti-Atlas, MoroccoThylacocephalan Layer and Hangenberg Black Shale in this basin provides well-preserved fossils of Famennian fauna, including chondrichthyans and placoderms that preserved soft tissues.83
Strud84? (Late Famennian)Namur Province, BelgiumMainly juvenile placoderms are known, suggesting this site would be nursery site of placoderms.85 Various biota like tetrapods, arthropods and plants are also known, Strudiella from this site may be the earliest insect, but its affinity is disputed.
Canowindra, New South Wales (Mandagery Sandstone)360 MaAustraliaAn accidentally discovered lagerstätte known for its exceptional preservation of Sarcopterygian and Placoderm fish.
Waterloo Farm Lagerstätte (Witpoort Formation)360 MaSouth AfricaImportant site that providing the only record of a high latitude (near polar) coastal ecosystem, overturning numerous assumptions about high latitude conditions during the latest Devonian.

Carboniferous

Site(s)AgeLocationSignificanceNotable fossils/organisms
Granton Shrimp Bed? (Dinantian)Firth of Forth, ScotlandDominated by well-preserved crustacean fossils, this site provided first body fossil of Clydagnathus which solved long-lasted mystery of conodont fossils.
East Kirkton Quarry86335 MaWest Lothian, ScotlandThis site has produced numerous well-preserved fossils of early tetrapods like temnospondyls or reptiliomorphs, and large arthropods like scorpions or eurypterids.
Bear Gulch Limestone324 MaMontana, USA limestone-rich geological lens in central Montana. It is renowned for its unusual and ecologically diverse fossil composition of chondrichthyans, the group of cartilaginous fish containing modern sharks, rays, and chimaeras. Other animals like brachiopods, ray finned fish, arthropods, and the possible mollusk Typhloesus are also known from the site.
Wamsutta Formation~320-318 MaMassachusettsA subhumid alluvian fan deposit that preserves ichnofossils, plants, invertebrates, and vertebrates.87
Bickershaw88? (Langsettian)Lancashire, EnglandThis locality contains exceptionally preserved fossils within nodules. Arthropods have greater diversity, many of which are aquatic ones that lived in brackish environment.
Joggins Fossil Cliffs (Joggins Formation)315 MaNova Scotia, CanadaA fossil site that preserves a diverse terrestrial ecosystem consisting of plants like lycopsids, giant arthropods, fish, and the oldest known sauropsid, Hylonomus.
Castlecomer fauna315-307Kilkenny, IrelandA konservat-lagerstätte with a high number of well-preserved spinicaudatan clam shrimp.8990
Linton Diamond Coal Mine9192310 MaOhio, USA site known for its number of prehistoric tetrapods, like the lepospondyl Diceratosaurus.93
Mazon Creek310 MaIllinois, USA conservation lagerstätte found near Morris, in Grundy County, Illinois. The fossils from this site are preserved in ironstone concretions with exceptional detail. The fossils were preserved in a large delta system that covered much of the area. The state fossil of Illinois, the enigmatic animal Tullimonstrum, is only known from these deposits.
Buckhorn Asphalt Quarry~310 MaOklahoma, USAA quarry of the Boggy Formation known for its exceptionally rich orthocerid assemblage.94
Kinney Brick Quarry (Atrasado Formation)around 307 MaNew Mexico, USThis site is known from rich fish fossils with preserved soft tissues, that lived in lagoonal environment. Dozens of fish genera are known, ranging from chondrichthyans like ctenacanths and hybodonts, to actinopterygians and sarcopterygians.95
Lontras Shale (Campáleo Outcrop)96GzhelianSanta Catarina, BrazilA fungal and palynological lagerstätte from Gondwana during Late Palaeozoic Ice Age.97
Montceau-les-Mines300 MaFranceExceptional preservation of Late Carboniferous fossil biota are known, including various vertebrates and arthropods, as well as plants.9899
Hamilton Quarry300 MaKansas, USThis site is known for its diverse assemblage of unusually well-preserved marine, euryhaline, freshwater, flying, and terrestrial fossils (invertebrates, vertebrates, and plants). This extraordinary mix of fossils suggests it was once an estuary.
Carrizo Arroyo? (Latest Gzhelian to earliest Asselian)New Mexico, USThis site is known from exceptional preservation of arthropod fossils, mainly insects.100

Permian

Site(s)AgeLocationSignificanceNotable fossils/organisms
Taiyuan Formation298 MaInner Mongolia, ChinaKnown from exceptionally well-preserved plant fossils in volcanic ash.101102
Meisenheim Formation103?(Asselian to early Sakmarian)104Lebach, GermanyThis site is well-known for the rich occurrence of fauna lived in large freshwater lakes, including fish, temnospondyls, insects and others.
Franchesse292 MaMassif Central, FranceA Sakmarian seymouriamorph lagerstätte from the Bourbon l'Archambault Basin in the French Massif Central containing hundreds of complete seymouriamorph specimens.105
Chemnitz petrified forest291 MaSaxony, GermanyA petrified forest in Germany that is composed of Arthropitys bistriata, a type of Calamites, giant horsetails that are ancestors of modern horsetails, found on this location with never seen multiple branches. Many more plants and animals from this excavation are still in an ongoing research.106
Mangrullo Formationabout 285–275 Ma (Artinskian)UruguayThis site is known for its abundant mesosaur fossils. It also contains the oldest known konservat-lagerstätte in South America, as well as the oldest known fossils of amniote embryos.107
Chekarda (Koshelevka Formation)about 283–273 MaPerm, RussiaOver 260 species of insect species are described from this site as well as diverse taxa of plants, making it one of the most important Permian konservat-lagerstätten.108
Toploje Member273-264 MaPrince Charles Mountains, AntarcticaThis site preserves a high-latitude fauna in exceptional position before the large extinctions that happened later in the Permian.109
Onder Karoo266.9–264.28 MaKaroo Basin, South AfricaA high latitude, cool-temperate lacustrine ecosystem preserving detailed plant and insect fossils.110
Sakamena Group111260–247 MaMadagascarLower Sakamena Formation (Permian) and Middle Sakamena Formation (Triassic) contain fossils of animals lived around wetland environment, such as semi-aquatic and gliding neodiapsids.
Kupferschiefer259–255 MaCentral EuropeThis site deposited in an open marine and shallow marine environment provides fossils of reptiles as well as many fish.
Huopu Lagerstätte~255 MaGuizhou, ChinaA plant fossil site documenting floral dynamics between the end-Guadalupian and end-Permian extinction events.112

Triassic

Site(s)AgeLocationSignificanceNotable fossils/organisms
Guiyang biota113250.8 MaGuizhou Province, ChinaThe oldest known Mesozoic lagerstätte (Dienerian). It preserves taxa belonging to 12 classes and 19 orders, including several species of fish.
Paris biota114~249 MaIdaho, Nevada, USAThis earliest Spathian aged assemblage preserves fossils belonging to 7 phyla and 20 orders, combining Paleozoic groups (e.g. leptomitid protomonaxonid sponges otherwise known from the early Paleozoic) with members of the Modern evolutionary fauna (e.g. gladius-bearing coleoids).
Jialingjiang Formation115249.2–247.2 MaHubei Province, ChinaThis site preserved aquatic reptiles soon after Permian extinction. Hupehsuchians are exclusively known from here, and already got unique ecology like filter feeding.
Nanlinghu Formation116248 MaAnhui Province, ChinaThis site provides important fossils to show early evolution of ichthyosauriforms.
Petropavlovka Formation248 MaOrenburg Oblast, RussiaA site known for preserving oligochaetes, whose fossil record is extremely sparse.117
Zarzaïtine FormationOlenekian-AnisianIn Amenas, AlgeriaA site with a high number of exceptionally well-preserved temnospondyl specimens, indicating of a seasonal climate with sudden droughts, with a freshwater ecosystem that could rapidly turn into a sebkha.118
Luoping Biota (Guanling Formation)119~247-245 MaYunnan, ChinaVarious marine animals are preserved in this site, showing how marine ecosystem recovered after Permian extinction.120
Hawkesbury Sandstone121AnisianSydney, AustraliaThis sandstone produced many of freshwater fish fossils, as well as arthropods.
Grès à Voltzia245 MaFranceA fossil site remarkable for its detailed myriapod specimens.122 It also contains the earliest known aphid fossils.123
Fossil Hill Member? (Anisian)Nevada, USOne of many Anisian marine lagerstatte, the Fossil Hill Member represents an open-ocean environment with a well-preserved fauna largely dominated almost entirely by ichthyosaurs.124
Vossenveld Formation? (Anisian)Winterswijk,NetherlandsAn exposure of this Muschelkalk formation in the Winterswijk quarry has a diverse assemblage of well-preserved marine reptiles, amphibians, fishes, and plants. It is the only marginal marine assemblage recorded from the earlier Triassic.125
Strelovec Formation? (Anisian)SloveniaA formation with well-preserved Triassic horseshoe crabs.126
Saharonim FormationLate Anisian/Lower LadinianSouthern District, IsraelOne brachiopod-dominated horizon of this formation documents the rapid burial of a community of exclusively juvenile Coenothyris brachiopods and ten different bivalve genera.127
Besano Formation128242 MaAlps, Italy and SwitzerlandThis formation is designated as a World Heritage Site, as it is famous for its preservation of Middle Triassic marine life including fish and aquatic reptiles.129130
Pelsa-Vazzoler LagerstätteLate LadinianNortheastern ItalyA site preserving a megadiverse mollusc fauna during the recovery from the Permian-Triassic extinction event.131
Xingyi biota (Zhuganpo Formation)132? (Upper Ladinian - Lower Carnian)Guizhou and Yunnan, ChinaPreviously considered as part of Falang Formation, this site yields many articulated skeletons of marine reptiles, as well as fish and invertebrates.
Guanling biota (Xiaowa Formation)133? (Carnian)Guizhou, ChinaLike Xingi Biota, this site also yields well-preserved marine fauna, especially many species of thalattosaurs are known.
Polzberg233 MaAustriaA site from the Reingrabener Schiefer known for exceptional preservation of bromalites134 and of cartilage,135 deposited during the Carnian Pluvial Event.136
Madygen Formation230 MaKyrgyzstanThe Madygen Formation is renowned for the preservation of more than 20,000 fossil insects, making it one of the richest Triassic lagerstätten in the world. Other vertebrate fossils as fish, amphibians, reptiles and synapsids have been recovered from the formation too, as well as minor fossil flora.
Cow Branch Formation230 MaVirginia, USThis site preserves a wide variety of organisms (including Fish, reptiles, arachnids, and insects).
Alakir Çay? (Norian)southwest TurkeyA konservat-lagerstätte with exceptionally well-preserved Triassic corals, retaining much of their original aragonite skeletons.137

Jurassic

Site(s)AgeLocationSignificanceNotable fossils/organisms
Yuzhou Biota (Ziliujing Formation)~199 MaChongqing, ChinaA fossil biota representing an extremely well-preserved lake ecosystem with freshwater mollusks, ray-finned fishes, lungfishes, sharks, and even pliosauroids, documenting one of the earliest well-preserved terrestrial ecosystems from Asia following the Triassic-Jurassic extinction event.138
Osteno (Moltrasio Formation)139~196-188 MaItalySeveral kinds of marine biota such as fish, crustaceans, cephalopods, polychaetes, and nematodes have been recovered. This site is the only fossil deposit in Italy in which soft tissues are preserved other than Monte Bolca.
Charmouth Mudstone Formation~196-188 MaLyme Regis and Charmouth (UK)Known for its amniote remains, specially complete specimens of the armoured dinosaur Scelidosaurus, but also plesiosaurs & ichthyosaurs.140141142 Large quantities of exceptional fish specimens and a diverse entomofauna are also known.143
Rotzo Formation~192-184 MaItalyDiverse fossils from a Carbonate archipelago, specially within plicatostylid reefs. It is mostly known for the exceptional preservation of organisms like Testate amoebae, and specially due to its amber-bearing layers and associated macroflora.144145
Calcaires du Bou Dahar196-183 MaMoroccoIt records the evolution of a carbonate platform.146 It is known mostly for its rich coral bioherms and associated invertebrates.147148
Korsaröd (Djupadal Formation)183 MaSkane, SwedenKnow for it´s excepcionally preserved plant remains, specially Osmundastrum pulchellum, preserving intact calcified tissue with DNA and cells.149 It has also preserved its biotic interactions and even ongoing mitosis.150151
Ya Ha Tinda183 MaAlberta, CanadaA fossil site notable for containing abundant and extremely well-preserved vampire squid, being the largest concentration of vampire squid fossils outside the Tethys Ocean,152 and for being deposited during the Toarcian Oceanic Anoxic Event (TOAE).153154155
Strawberry Bank183 MaSomerset, EnglandA site from the TOAE documenting marine life during the recovery from the Triassic-Jurassic extinction event as well as the turmoil of the TOAE.156 The oldest pseudoplanktonic barnacles in the fossil record,157 near-complete ichthyosaur skeletons,158 and evidence of ichthyosaur niche partitioning are preserved at this site.159
Grimmen Formation183 MaGrimmen, GermanyA coastal marine sequence, know specially for its fish fauna.160161 The formation is also known for its rich entomofauna, including collections of up to 3000 specimens.162
Holzmaden/Posidonia Shale183 MaWürttemberg, GermanyThe Sachrang member is among the most important formations of the Toarcian boundary, due to the concentrations of exceptionally well-preserved complete skeletons of fossil marine fish and reptiles. It was also deposited during the TOAE.163164
Cabeço da LadeiraLate BajocianPortugalA site known for exquisite preservation of microbial mats in a tidal flat.165
Monte Fallano? (Bajocian-Bathonian)Campania, ItalyThis Plattenkalk preserves fossils of terrestrial plants, crustaceans and fish.166
Christian MalfordCallovianWiltshire, EnglandA site in the Oxford Clay Formation which preserves exceptionally detailed coleoid fossils.167
Mesa Chelonia168164.6 MaShanshan County, ChinaThis site is notable because it contains a large turtle bonebed, containing specimens of the genus Annemys. This bonebed contains up to an estimated 36 turtles per square meter.
La Voulte-sur-Rhône160 MyaArdèche, FranceLa Voulte-sur-Rhône, in the Ardèche region of southwestern France, offers paleontologists an outstanding view of an undisturbed paleoecosystem that was preserved in fine detail. Notable finds include retinal structures in the eyes of thylacocephalan arthropods, and fossilized relatives of the modern day vampire squid, like Vampyronassa rhodanica.
Shar Teeg Beds160-145 MyaGovi-Altay, MongoliaMany insect remains and some vertebrates like relatives of crocodilians are known from this site.169
Karabastau Formation155.7 MaKazakhstanThis site is an important locality for insect fossils that has been studied since the early 20th century, alongside the rarer remains of vertebrates, including pterosaurs, salamanders, lizards and crocodiles.
Tiaojishan Formation165-153 MaLiaoning Province, ChinaIt is known for its exceptionally preserved fossils, including those

of plants, insects and vertebrates. It is made up mainly of pyroclastic rock interspersed with basic volcanic and sedimentary rocks.

La Casita FormationKimmeridgianCoahuila, MexicoA marine konzentrat-lagerstätte deposited in a hemipelagic mud bottom during dysoxic conditions.170
Talbragar fossil site171151 MaNew South Wales, AustraliaThis bed is part of Purlawaugh Formation, and provided fauna like fish and insects that lived around the lake.
Cleveland-Lloyd Dinosaur Quarry150 MaUtah, USJurassic National Monument, at the site of the Cleveland-Lloyd Dinosaur Quarry, well known for containing the densest concentration of Jurassic dinosaur fossils ever found, is a paleontological site located near Cleveland, Utah, in the San Rafael Swell, a part of the geological layers known as the Morrison Formation. Up to 15,000 have been excavated from this site alone.
Canjuers Lagerstätte150 MaFranceThis site shows a high amount of biodiversity, including reptiles, invertebrates, fish, and other organisms.
Agardhfjellet Formation150-140 MaSpitsbergen, NorwayThe formation contains the Slottsmøya Member, a highly fossiliferous unit where many ichthyosaur and plesiosaur fossils have been found, as well as abundant and well preserved fossils of invertebrates.
Solnhofen Limestone149-148 MaBavaria, GermanyThis site is unique as it preserves a rare assemblage of fossilized organisms, including highly detailed imprints of soft bodied organisms such as sea jellies. The most familiar fossils of the Solnhofen Plattenkalk include the early feathered theropod dinosaur Archaeopteryx preserved in such detail that they are among the most famous and most beautiful fossils in the world.
Owadów–Brzezinki site~148 MaŁódź Voivodeship, PolandA marine deposit of the Kcynia Formation similar to the Solnhofen Formation, with large numbers of preserved insect remains, numerous marine invertebrates, and vertebrates including fishes, marine reptiles, and pterosaurs.172173174

Cretaceous

Site(s)AgeLocationSignificanceNotable fossils/organisms
Muzinho Shalelatest Jurassic/earliest CretaceousParnaíba Basin, BrazilA black shale deposit containing articulated, three-dimensionally preserved fish skeletons.175
Angeac-Charente bonebed~141 MaCharente, FranceA lagerstätte preserving both vertebrate and invertebrate fossils from the poorly represented Berriasian stage known for its taphonomic and sedimentological ‘frozen scenes’.176
El Montsec (La Pedrera de Rúbies Formation)~140-125 MaCatalonia, SpainKnown from exceptional preservation of biota such as plants, fish, insects, crustaceans and even some tetrapods.177
Lebanese amber~130-125 Ma (Barremian)LebanonPreserves a high diversity of insects from the Early Cretaceous, and is among the oldest known fossilized amber to contain a significant number of preserved organisms.178 Includes many of the oldest known members of modern insect groups, and many of the youngest known members for extinct insect groups.179
Grès du Liban Alloformation~125 Ma (early Barremian)LebanonA deposit of dysodiles (sedimentary rocks with high organic matter content) representing a well-preserved freshwater ecosystem, including plants, pollen grains, invertebrates (including insects), turtles, and a diverse fish fauna.180181
Las Hoyasabout 125 Ma (Barremian)Cuenca, SpainThe site is mostly known for its exquisitely preserved dinosaurs, especially enantiornithines. The lithology of the formation mostly consists of lacustarine limestone deposited in a freshwater wetland environment.
Yixian Formationabout 125–121 Ma (Barremian-Aptian)Liaoning, ChinaThe Yixian Formation is well known for its great diversity of well-preserved specimens and its feathered dinosaurs, such as the large tyrannosauroid Yutyrannus, the therizinosaur Beipiaosaurus, and various small birds, along with a selection of other dinosaurs, such as the iguanodontian Bolong, the sauropod Dongbeititan and the ceratopsian Psittacosaurus. Other biota included the troodontid Mei, the dromaeosaurid Tianyuraptor, and the compsognathid Sinosauropteryx.
Jiufotang Formationabout 122-119 Ma (Aptian)Liaoning, ChinaThis formation overlies the slightly older Yixian Formation and preserved very similar species, including a wide variety of dinosaurs such as the ceratopsian Psittacosaurus and the early bird Confuciusornis, both of which are also found in the Yixian Formation. Also notable are the very abundant specimens of the dromaeosaurid Microraptor, which is known from up to 300 specimens and is among the most common animals found here.
Khasurty Fossil Site? (Aptian)Buryatia, RussiaOne of the largest fossil insect sites in northern Asia, with over 6000 fossilized insect specimens preserved in mudstones, representing over 16 orders and 130 families. Taxa have both Jurassic & Cretaceous affinities. Fossils of other invertebrates such as arachnids & crustaceans are also known, in addition to small plants and fragmentary vertebrate remains such as fish scales and bird feathers.182
Shengjinkou Formationabout 120 MaXinjiang, ChinaPart of the finds from this site consisted of dense concentrations of pterosaur bones, associated with soft tissues and eggs. The site represented a nesting colony that storm floods had covered with mud. Dozens of individuals could be secured from a total that in 2014 was estimated to run into the many hundreds.
Xiagou Formationabout 120–115? MaGansu, ChinaThis site is known outside the specialized world of Chinese geology as the site of a lagerstätte in which the fossils were preserved of Gansus yumenensis, the earliest true modern bird.
Paja Formation130-113 MaColombiaThis site is famous for its vertebrate fossils and is the richest Mesozoic fossiliferous formation of Colombia. Several marine reptile fossils of plesiosaurs, pliosaurs, ichthyosauras and turtles have been described from the formation and it hosts the only dinosaur fossils described in the country to date; the titanosauriform sauropod Padillasaurus.
Koonwarra Fossil Bed183around 118-115 MaVictoria, AustraliaThis site is composed of mudstone sediment thought to have been laid down in a freshwater lake. Arthropods, fish and plant fossils are known from this site.
Crato Formation113 Manortheast BrazilThe Crato Formation earns the designation of lagerstätte due to an exceedingly well preserved and diverse fossil faunal assemblage. Some 25 species of fossil fishes are often found with stomach contents preserved, enabling paleontologists to study predator-prey relationships in this ecosystem. There are also fine examples of pterosaurs, reptiles and amphibians, invertebrates (particularly insects), and plants. Also known from this site is Ubirajara, the first non-avian dinosaur from the southern hemisphere with evidence of feathers. Additionally, the formation abounds with evidence of plant-insect interaction.184
Amargosa Bed (Marizal Formation)? (Aptian-Albian)northeast BrazilFluvial site which preserved fish, crustacean and plant fossils.185
Pietraroja Plattenkalk113-110 MaCampania, ItalyA konservat-lagerstätte famous for its diverse and well-preserved fish and plant fossils. Also known from this formation is Scipionyx, one of Europe's most well-preserved dinosaurs.186187
Jinju Formation112.4–106.5 MaSouth KoreaThe Jinju Formation is notable for the post-Jehol Group insect assemblage,188 as well as other fauna such as isopods and fish.189190 The site is also notable for its abundance and diversity of tetrapod trackways.191
Tlayúa Formation110 MaPuebla, MexicoA marine lagerstätte preserving Albian actinopterygians and lepidosaurs.192
Romualdo Formation108–92 Manortheast BrazilThe Romualdo Formation is a part of the Santana Group and has provided a rich assemblage of fossils; flora, fish, arthropods insects, turtles, snakes, dinosaurs, such as Irritator, and pterosaurs, including the genus Thalassodromeus. The stratigraphic units of the group contained several feathers of birds, among those the first record of Mesozoic birds in Brazil.
Muhi Quarry (El Doctor Formation)? (Albian to Cenomanian, probably Late Albian)193Hidalgo, MexicoWhile this site produced limestones for construction, rocks in that locality contain a diverse Cretaceous marine biota such as fish, ammonites and crustaceans.
Puy-Puy Lagerstätte100.5 MaFranceA paralic site preserving a variety of ichnofossils,194 along with some vertebrate remains.195 The site preserves evidence of plant-insect interaction.196
Burmese amber101-99 Ma (latest Albian/earliest Cenomanian)MyanmarMore than 1,000 species of taxa have been described from ambers from Hukawng Valley. While it is important for understanding the evolution of biota, mainly insects, during the Cretaceous period, it is also extremely controversial by facing ethical issues due to its association with conflicts and labor conditions.
El Chango LagerstätteEarliest CenomanianChiapasA site from the beginning of the Angiosperm Terrestrial Revolution containing early evidence of insect predation on angiosperms.197
English Chalk100-90 Ma (Cenomanian to Turonian)EnglandTwo subsections of England's famous chalk formation, the Grey Chalk Subgroup and the lower sections of the White Chalk Subgroup, yield three-dimensionally preserved fossils of marine fishes. This exquisite level of preservation is unlike fish fossils from other deposits from around the same time, which are only preserved as two-dimensional compression fossils.198
Haqel/Hjoula/al-Nammoura95-94 MaLebanonFamous Lebanese konservat-lagerstätten of the Late Cretaceous (middle to late Cenomanian) age, which contain a well-preserved variety of different fossils. Small animals like shrimp, octopus, stingrays, and bony fishes are common finds at these sites. Some of the rarest fossils from this locality include those of octopuses.199
Ein Yabrud (Amminadav Formation or Bet-Meir Formation)CenomanianWest Bank, PalestineThe marine fossil site with well-preserved marine vertebrate fossils, especially fossils of early legged snakes like Haasiophis and Pachyrhachis has quality of preservation rivals that of other famous Lagerstatten.200
Komen Limestone95-94 MaKomen, SloveniaA Late Cenomanian locality in the Karst of Slovenia with a high diversity of articulated fossil fish, in addition to small reptiles and invertebrates.201
Hesseltal Formation94–93 MaSaxony & North Rhine-Westphalia, GermanyDeposited during the anoxic conditions of the Cenomanian-Turonian boundary event, this formation has a high number of well-preserved, articulated fish skeletons, in addition to exceptionally preserved ammonites with soft parts.202203
Vallecillo (Agua Nueva Formation)94–92 MaNuevo León, MexicoThe site is noted for its qualities as a konservat-lagerstätte, with notable finds including the plesiosaur Mauriciosaurus and the possible shark Aquilolamna.
Conulus BedTuronianPolandA crinoid konzentrat-lagerstätte.204
Akrabou Formation (Gara Sbaa/Agoult & Goulmima)? (Turonian)Asfla, MoroccoMarine site known for exceptionally preserved, three-dimensional fish fossils.205206
Orapa diamond mineTuronianBotswanaAn insect lagerstätte known for being one of the few entomofaunas from southern Africa, containing a variety of insects,207 particularly beetles.208209
New Jersey amber91-89 MaNew Jersey, USTuronian-aged amber from the Raritan & Magothy Formations of New Jersey, with a high diversity of well-preserved insects, plants and fungi.210
Lower Idzików beds87-86 Ma (Coniacian)Lower Silesian Voivodeship, PolandAn exposure of these beds near Stary Waliszów contains a konzentrat-lagerstätte of numerous Cretaceous marine invertebrates in concretions, including decapods, molluscs and echinoderms, as well as well-preserved plant fossils that indicate a nearshore environment. Very well-preserved phosphatized decapod remains are known.211
Smoky Hill Chalk87–82 MaKansas and Nebraska, USA Cretaceous konservat-lagerstätte known primarily for its exceptionally well-preserved marine reptiles. Also known from this site are fossils of large bony fish such as Xiphactinus, mosasaurs, flying reptiles or pterosaurs (namely Pteranodon), flightless marine birds such as Hesperornis, and turtles.
Ingersoll Shale85 MaAlabama, USA Late Cretaceous (Santonian) informal geological unit in eastern Alabama. Fourteen theropod feathers assigned to birds and possibly dromaeosaurids have been recovered from the unit.
Sahel Alma~84 MaLebanonA Late Cretaceous (Santonian) konservat-lagerstätte with similar excellent preservation of marine organisms as the nearby, older Sannine Lagerstätte, but in a deep-water environment. Includes a high number of well-preserved shark body fossils, in addition to cephalopods and deepwater arthropods.212
Calcare di Aurisina~80-70.6 MaItaly & SloveniaA late cretaceous shallow marine series of carbonate platforms dominated by rudists, with fossils of invertebrates and vertebrates, specially fishes.213 Its best known outcrop is the Villaggio del Pescatore site, that yielded the holotype of Tethyshadros, as well other exceptionally preserved taxa like Acynodon adriaticus.214215
Auca Mahuevo80 MaPatagonia, ArgentinaA Cretaceous lagerstätte in the eroded badlands of the Patagonian province of Neuquén, Argentina. The sedimentary layers of the Anacleto Formation at Auca Mahuevo were deposited between 83.5 and 79.5 million years before the present and offers a view of a fossilized titanosaurid nesting site.
Ellisdale Fossil Site79-76 MaNew Jersey, USA middle Campanian konzentrat-lagerstätte from the Marshalltown Formation with one of the most diverse Mesozoic vertebrate faunas of eastern North America, likely originating from a flood event. A high number of disarticulated bones of dinosaurs, fish, reptiles, amphibians, and small mammals is known, most of which are microfossils.216
Coon Creek Formation76.8-76.0 Ma217Tennessee and Mississippi, USThis late Campanian formation has some of the world's best-preserved remains of Cretaceous marine invertebrates (primarily mollusks and decapod crustaceans), with many retaining their original aragonitic shells and exoskeletons.218219
Baumberge Formation~75-72 MaNorth Rhine-Westphalia, GermanyA Late Campanian formation in the Baumberge of Germany with a high number of articulated fossil fish remains, in addition to shark body fossils.220221
Nardò (Calcari di Melissano)222~72-70 Ma (upper Campanian-lower Maastrichtian)Apulia, ItalyThis site is especially famous for its limestones containing abundant fossil fish remains.
Harrana (Muwaqqar Chalk Marl Formation)66.5-66.1 Ma (Late Maastrichtian)223JordanPhosphatic deposits formed in this site are known to preserve vertebrate fossils with soft tissue, such as mosasaurs, plesiosaurs, sharks, bony fish, turtles and crocodylians.224
Tanis22566.0 MaNorth Dakota, USTanis is part of the heavily studied Hell Creek Formation, a group of rocks spanning four states in North America renowned for many significant fossil discoveries from the Upper Cretaceous and lower Paleocene. Tanis is a significant site because it appears to record the events from the first minutes until a few hours after the impact of the giant Chicxulub asteroid in extreme detail. This impact, which struck the Gulf of Mexico 66.043 million years ago, wiped out all non-avian dinosaurs and many other species (the so-called "K-Pg" or "K-T" extinction).

Paleogene

Site(s)AgeLocationSignificanceNotable fossils/organisms
Baunekule Facies64-63 Ma (Danian)eastern DenmarkThese facies of the Faxe Formation document an extremely well-preserved cold-water coral mound ecosystem dominated by Dendrophyllia corals, and also includes gastropods, tubeworms, bivalves, bryozoans and gastropods.226
Tenejapa-Lacandón Formation~63 MaChiapas, MexicoA formation with a high number of well-preserved fish fossils indicative of mass mortality events.227 One of the most important formations for documenting the recovery of ocean ecosystems in the wake of the K-Pg extinction, due to being deposited just a few million years after and being located only 500 kilometres (310 mi) away from the Chixculub impact site.228

Menat Formation

60 Ma

Auvergne, France

A Palaeocene maar lake containing three-dimensional plant remains.229 It is particularly notable for preserving one of the oldest known bees.230

Danata Formation56-53 Mawestern TurkmenistanOutcropping in the Kopet Dag range, this formation preserves numerous fossil fish from a northeastern arm of the Tethys Ocean during the Paleocene-Eocene thermal maximum. 38 taxa from 13 orders are known, the vast majority of which are acanthomorphs.231232

Fur Formation

55–53 Ma

Fur & Mors, Denmark

Preserves abundant fossil fish, insects, reptiles, birds and plants. The Fur Formation was deposited about 55 Ma, just after the Palaeocene-Eocene boundary, and its tropical or sub-tropical flora indicate that the climate after the Paleocene-Eocene Thermal Maximum was moderately warm (approximately 4-8 degrees warmer than today).

London Clay

54–48 Ma

England, UK

Collected for close to 300 years, Plant fossils, especially seeds and fruits, are found in abundance. Some 350 named species of plant have been found, making the London Clay flora one of the world's most diverse for fossil seeds and fruits. The flora includes tropical taxa found in modern Asia, reflecting the much warmer climate of the early Eocene.

Eocene Okanagan Highlands

52 - 48 Ma

British Columbia, Canada & Washington, USA

Includes McAbee Fossil Beds, Princeton chert & Klondike Mountain Formation; Recognized as temperate/subtropical uplands right after the Paleocene–Eocene Thermal Maximum and spanning the Early Eocene Climatic Optimum, preserves highly detailed uplands lacustrine fauna and flora.

Monte Solane51-49 MAVerona, ItalySlightly older than the nearby, more well-known Monte Bolca site, the Monte Solane site also preserves numerous marine fish and plants, but documents an entirely different ecosystem that appears to be of a bathypelagic habitat, forming one of the few known lagerstätte to preserve a deep-sea ecosystem.233

Green River Formation

50 Ma

Colorado/Utah/Wyoming, US

An Eocene aged site that is noted for the fish fauna preserved. Other fossils include the crocodilians, birds, and mammals.

Monte Bolca

50-49 Ma

Verona, Italy

A fossil site with specimens of fish and other organisms that are so highly preserved that their organs are often completely intact in fossil form, and even the skin color can sometimes be determined. It is assumed that mud at the site was low in oxygen, preventing both decay and the mixing action of scavengers from harming the fossils.234

Messel Formation

47 Ma

Hessen, Germany

This site has significant geological and scientific importance. Over 1000 species of plants and animals have been found at the site. After almost becoming a landfill, strong local resistance eventually stopped these plans and the Messel Pit was declared a UNESCO World Heritage Site on 9 December 1995. Significant scientific discoveries about the early evolution of mammals and birds are still being made at the Messel Pit, and the site has increasingly become a tourist site as well.

Baltic amber47-35 Ma (Lutetian to Priabonian)Pomeranian Voivodeship, Poland & Kaliningrad Oblast, RussiaThe largest amber deposit on Earth, this amber is part of the Prussian Formation, and preserves a high diversity of exceptionally well-preserved fossil invertebrates, plants, and small vertebrates that inhabited eastern Europe during the warmer, subtropical conditions of the middle Eocene. It is the largest world's single largest repository of fossil insects.235236237238
Kishenehn Formation46.2 MaMontana, USA Middle Eocene site preserving exquisitely detailed insect specimens in oil shale.239
Mahenge Formation46 MaTanzaniaA terrestrial Middle Eocene lagerstätte preserving fish, plant and arthropod fossils.240241

Quercy Phosphorites Formation242

45-25 Ma

Occitania, France

This site qualifies as a lagerstätte because beside a large variety of mammals, birds, turtles, crocodiles, flora and insects, it also preserves the soft tissues of amphibians and squamates, in addition to their articulated skeleton in what has been called natural mummies.

Na DuongPriabonianNorthern VietnamA Late Eocene site notable for its highly detailed coprolite preservation.243
Bitterfeld amber38-34 MaSaxony, GermanyOne of three major Paleogene deposits of European amber, this deposit of the Cottbus Formation shares a similar biota to the Baltic Amber, indicating a concurrent formation, but appears to have a geologically distinct origin from Baltic amber.244
Rovno amber38-34 MaRivne Oblast, Ukraine & Gomel, BelarusOne of three major Paleogene deposits of European amber, this deposit of the Obukhov Formation preserves a high diversity of invertebrates, many of which are shared with the Baltic amber but others of which are unique. A drier habitat compared to the Baltic amber is suggested based on some of the insect taxa preserved.245

Florissant Formation

34 Ma

Colorado, US

A late Eocene (Priabonian) aged site that is noted for the finely preserved plant and insect paleobiota. Fossils are preserved in diatom blooms of a lahar dammed lake system and the formation is noted for the petrified stumps of Sequoia affinis

Babaheidar (Pabdeh Formation)late Eocene/early OligoceneChaharmahal and Bakhtiari province, IranA well-preserved marine fossil site in the Zagros Mountains with thousands of known fish fossils, as well as plants, crustaceans, insects, and birds.246
Tremembé Formation30-25 MaSão Paulo, BrazilA Late Oligocene-aged freshwater lake deposit, containing well-preserved fossil fishes.247
Menilite FormationEarly OligocenePolandA deep-sea flysch deposit along the Carpathian Mountains, originally deposited in the Paratethys Sea with exceptionally preserved deepwater fish fossils and microbial mats.248
Canyon Ferry Reservoir32.0 ± 0.1 MaMontana, USA diverse Early Oligocene plant and insect fossil site.249
Luberon (Campagne-Calavon Formation)~30 MaCereste, FranceA group of early Oligocene localities deposited along a large freshwater lake, preserving the fossils of plants, insects, fish, and terrestrial vertebrates, often with articulated skeletons, skin outlines, feathers, and original pigmentation patterns.250
Rauenberg/Frauenweiler Clay Pit30 MaBaden-Württemberg, GermanyA marine fossil site with an Arctic-like invertebrate fauna and a Paratethyan vertebrate fauna displaying evidence of intermittent anoxia.251
Sangtang Lagerstätte~28 – 23 MaGuangxi, ChinaA section of the Late Oligocene Yongning Formation with one of the very few known Cenozoic assemblages of mummified plant fossils,252 including mummified fruits.253254255

Enspel Lagerstätte

24.79-24.56 Ma

Rhineland-Palatinate, Germany

A Chattian maar deposit famous for its insect fossils.256

Aix-en-Provence Formation~24 MaProvence, FranceA terminal Oligocene brackish palaeoenvironment.257

Neogene

Site(s)AgeLocationSignificanceNotable fossils/organisms
Dominican amber30–10 MaDominican RepublicDominican amber differentiates itself from Baltic amber by being nearly always transparent, and it has a higher number of fossil inclusions. This has enabled the detailed reconstruction of the ecosystem of a long-vanished tropical forest.258
Riversleigh25–15 MaQueensland, AustraliaThis locality is recognised for the series of well preserved fossils deposited from the Late Oligocene to the Miocene. The fossiliferous limestone system is located near the Gregory River in the north-west of Queensland, an environment that was once a very wet rainforest that became more arid as the Gondwanan land masses separated and the Australian continent moved north.
Foulden Maar23 MaOtago, New ZealandThese layers of diatomite have preserved exceptional fossils of fish from the crater lake, and plants, spiders, and insects from the sub-tropical forest that developed around the crater,259 along with in situ pollen.260
Ebelsberg Formation23-22 MaUpper Austria, AustriaThis Aquitanian-aged konservat-lagerstätte records an exceptional fossil assemblage of an enormous number of plants, fish, marine mammals, and marine invertebrates from a section of the central Paratethys Sea.261
Chiapas amber23-15 MaChiapas, Mexico262As with other ambers, a wide variety of taxa have been found as inclusions including insects and other arthropods, as well as plant fragments and epiphyllous fungi.
Clarkia fossil beds20-17 MaIdaho, USThe Clarkia fossil beds site is best known for its fossil leaves. Their preservation is exquisite; fresh leaves are unfossilized, and sometimes retain their fall colors before rapidly oxidizing in air. It has been reported that scientists have managed to isolate small amounts of ancient DNA from fossil leaves from this site. However, other scientists are skeptical of the validity of this reported occurrence of Miocene DNA.
Barstow Formation19–13.4 MaCalifornia, USThe sediments are fluvial and lacustrine in origin except for nine layers of rhyolitic tuff. It is well known for its abundant vertebrate fossils including bones, teeth and footprints. The formation is also renowned for the fossiliferous concretions in its upper member, which contain three-dimensionally preserved arthropods.
Shanwang Formation18-17 MaShandong Province, ChinaFossils have been found at this site in dozens of categories, representing over 600 separate species. Animal fossils include insects, fish, spiders, amphibians, reptiles, birds and mammals. Insect fossils have clear, intact veins. Some have retained beautiful colours.
Morozaki Group26318-17 MaAichi Prefecture, JapanKnown from well-preserved deep sea fauna including fish, starfish and arthropods like crabs, shrimps and giant amphiopods.
Sandelzhausen16 MaBavaria, GermanyA Middle Miocene vertebrate locality.264
McGraths Flat~16-11 MaNSW, AustraliaDeposited in unusual conditions that record microscopic details of soft tissues and delicate structures. Fossil evidence of animals with soft bodies, unlike the bones of mammals and reptiles, is rare in Australia, and discoveries at McGraths' Flat have revealed unknown species of invertebrates such as insects and spiders.265
Dolnja Stara~15 MaSloveniaA barnacle fossil site preserving barnacles shortly after settlement attached to mangrove leaves.266
Pisco Formation15-2 MaArequipa & Ica, PeruSeveral specialists consider the Pisco Formation one of the most important lagerstätten, based on the large amount of exceptionally preserved marine fossils, including sharks (most notably megalodon), penguins, whales, dolphins, birds, marine crocodiles and aquatic giant sloths.
Hindon Maar14.6 MaNew ZealandA maar preserving a Southern Hemisphere lake-forest ecosystem, including body fossils of plants, insects, fish, and birds,267 along with in situ pollen268 and coprolites of both fish and birds.269
Ngorora Formation13.3-9 MaTanzaniaThe alkaline palaeolake deposits of the Ngorora Formation contains articulated fish fossils that died en masse from asphyxiation during episodic ash falls or from rapid acidification.270
Öhningen Maar13 MaBaden-Württemberg, GermanyThis unit of the Upper Freshwater-Molasse contains a former crater lake that has produced long-renowned fossils for centuries, including several foundational to the science of paleontology. About 1,500 species have been described from these deposits.271
Pi Gros13 MaCatalonia, SpainAn ichnofossil lagerstätte containing annelid, mollusc, and sponge trace fossils. The fossil site no longer exists due to having been quarried for the construction of an industrial park.272
Bullock Creek12 MaNorthern Territory, AustraliaAmong the fossils at the Bullock Creek site have been found complete marsupial crania with delicate structures intact. New significant taxa identified from the Bullock Creek mid Miocene include a new genus of crocodile, Baru (Baru darrowi), a primitive true kangaroo, Nambaroo, with high-crowned lophodont teeth; and a new species of giant horned tortoise, Meiolania. New marsupial lion, thylacine, and dasyurid material has also been recovered.
Tunjice? (Middle Miocene)SloveniaThis site is known worldwide for the earliest fossil records of seahorses.273
Ashfall Fossil Beds11.83 MaNebraska, USThe Ashfall Fossil Beds of Antelope County in northeastern Nebraska are rare fossil sites of the type called lagerstätten that, due to extraordinary local conditions, capture an ecological "snapshot" in time of a range of well-preserved fossilized organisms. Ash from a Yellowstone hotspot eruption 10-12 million years ago created these fossilized bone beds.
Alcoota Fossil Beds8 MaNorthern Territory, AustraliaIt is notable for the occurrence of well-preserved, rare, Miocene vertebrate fossils, which provide evidence of the evolution of the Northern Territory's fauna and climate. The Alcoota Fossil Beds are also significant as a research and teaching site for palaeontology students.
Saint-Bauzile7.6-7.2 MaArdèche, FranceA Late Miocene site preserving articulated mammal skeletons with skin and fur impressions.274
Capo San Marco Formation~7 MaSardinia, ItalyA microbialite containing exceptionally preserved Girvanella-type filaments.275
Tresjuncos6 MaCuenca, SpainA Late Miocene lacustrine konservat-lagerstätte containing fossils of diatoms, plants, crustaceans, insects, and amphibians.276
LibrosLate MioceneTeruel, SpainA Late Miocene lacustrine lagerstätte located inside a sulfur mine, including well-preserved remains of frogs, as well as beavers, birds, snake, insects, arachnids, and plant remains.277
Gray Fossil Site4.9-4.5 MaTennessee, USAs the first site of its age known from the Appalachian region, the Gray Fossil Site is a unique window into the past. Research at the site has yielded many surprising discoveries, including new species of red panda, rhinoceros, pond turtle, hickory tree, and more. The site also hosts the world's largest known assemblage of fossil tapirs.
WillershausenLate PlioceneLower Saxony, GermanyA lacustrine fossil site containing well preserved beetles.278

Quaternary

Site(s)AgeLocationSignificanceNotable fossils/organisms
The Mammoth Site26 KaSouth Dakota, USThe facility encloses a prehistoric sinkhole that formed and was slowly filled with sediments during the Pleistocene era. As of 2016, the remains of 61 mammoths, including 58 North American Columbian and 3 woolly mammoths had been recovered. Mammoth bones were found at the site in 1974, and a museum and building enclosing the site were established.
Rancho La Brea Tar Pits40–12 KaCalifornia, USA group of tar pits where natural asphalt (also called asphaltum, bitumen, or pitch; brea in Spanish) has seeped up from the ground for tens of thousands of years. Over many centuries, the bones of trapped animals have been preserved. Among the prehistoric species associated with the La Brea Tar Pits are Pleistocene mammoths, dire wolves, short-faced bears, American lions, ground sloths, and, the state fossil of California, the saber-toothed cat (Smilodon fatalis).
Waco Mammoth National Monument65–51 KaTexas, USA paleontological site and museum in Waco, Texas, United States where fossils of 24 Columbian mammoths (Mammuthus columbi) and other mammals from the Pleistocene Epoch have been uncovered. The site is the largest known concentration of mammoths dying from a (possibly) reoccurring event, which is believed to have been a flash flood.
El Breal de Orocual2.5–1 MaMonagas, VenezuelaThe largest asphalt well on the planet. Like the La Brea Tar Pits, this site preserves a number of megafauna like toxodonts, glyptodonts, camelids, and the felid Homotherium venezuelensis.
El Mene de Inciarte28–25.5 KaZulia, VenezuelaAnother series of tar pits. These also preserve a similar assemblage of megafauna.
Naracoorte Caves500-1 KaSouth Australia, AustraliaA series of caves that preserve numerous pleistocene megafauna, like Thylacoleo, and is recognized as a World heritage site alongside the older, but geographically similar Riversleigh site.
Mare aux Songes4 KaMauritiusA marsh that preserves a diversity of subfossil animals and plants, many of which were driven to extinction without proper documentation following human arrival, most notably the famous dodo. The mortality assemblages may have formed from a freshwater lake that was occasionally impacted by catastrophic droughts.279
Crawford Lake800 Ya-presentOntario, CanadaThis lake is notable for its detailed preservation of rotifer and dinoflagellate fossils even after centuries, documenting the ecological shifts that occurred in and around the lake following the establishment of a Iroquoian village from 1268–1486 CE, and later following European colonization of the region in the early 19th century.280

See also

  • List of fossil sites (with link directory)
  • Hoard, a concentration of human artifacts useful for similar reasons in archaeology

Further reading

References

  1. The term was originally coined by Adolf Seilacher in: Seilacher, A. (1970). "Begriff und Bedeutung der Fossil-Lagerstätten: Neues Jahrbuch fur Geologie und Paläontologie". Monatshefte (in German). 1970: 34–39. /wiki/Adolf_Seilacher

  2. The term was redefined by Julien Kimmig and James D. Schiffbauer in: Kimmig, Julien; James D. Schiffbauer (25 April 2024). "A modern definition of Fossil-Lagerstätten". Trends in Ecology and Evolution. 39 (6): 621–624. doi:10.1016/j.tree.2024.04.004. PMID 38670863. /w/index.php?title=Julien_Kimmig&action=edit&redlink=1

  3. Briggs et al. 1983; Aldridge et al. 1993.[full citation needed] /wiki/Wikipedia:Citing_sources#What_information_to_include

  4. Retallack, G. J. (2011). "Exceptional fossil preservation during CO2 greenhouse crises?". Palaeogeography, Palaeoclimatology, Palaeoecology. 307 (1–4): 59–74. Bibcode:2011PPP...307...59R. doi:10.1016/j.palaeo.2011.04.023. /wiki/Palaeogeography,_Palaeoclimatology,_Palaeoecology

  5. Kimmig, Julien; Schiffbauer, James D. (2024). "A modern definition of Fossil-Lagerstätten". Trends in Ecology & Evolution. 39 (7): 621–624. doi:10.1016/j.tree.2024.04.004. PMID 38670863. https://linkinghub.elsevier.com/retrieve/pii/S0169534724000867

  6. Kimmig, Julien; Schiffbauer, James D. (2024). "A modern definition of Fossil-Lagerstätten". Trends in Ecology & Evolution. 39 (7): 621–624. doi:10.1016/j.tree.2024.04.004. PMID 38670863. https://linkinghub.elsevier.com/retrieve/pii/S0169534724000867

  7. Albani, Abderrazak El; Bengtson, Stefan; Canfield, Donald E.; Bekker, Andrey; Macchiarelli, Roberto; Mazurier, Arnaud; Hammarlund, Emma U.; Boulvais, Philippe; Dupuy, Jean-Jacques; Fontaine, Claude; Fürsich, Franz T.; Gauthier-Lafaye, François; Janvier, Philippe; Javaux, Emmanuelle; Ossa, Frantz Ossa; Pierson-Wickmann, Anne-Catherine; Riboulleau, Armelle; Sardini, Paul; Vachard, Daniel; Whitehouse, Martin; Meunier, Alain (July 2010). "Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago". Nature. 466 (7302): 100–104. doi:10.1038/nature09166. PMID 20596019. /wiki/Doi_(identifier)

  8. El Albani, A.; Konhauser, K.O.; Somogyi, A.; Ngwalghoubou Ikouanga, J.; Lamboux, A.; Blichert-Toft, J.; Chi-Fru, E.; Fontaine, C.; Mazurier, A.; Riboulleau, A.; Pierson-Wickmann, A.-C.; Albarède, F. (June 2023). "A search for life in Palaeoproterozoic marine sediments using Zn isotopes and geochemistry". Earth and Planetary Science Letters. 612: 118169. doi:10.1016/j.epsl.2023.118169. /wiki/Doi_(identifier)

  9. Fakhraee, Mojtaba; Tarhan, Lidya G.; Reinhard, Christopher T.; Crowe, Sean A.; Lyons, Timothy W.; Planavsky, Noah J. (May 2023). "Earth's surface oxygenation and the rise of eukaryotic life: Relationships to the Lomagundi positive carbon isotope excursion revisited". Earth-Science Reviews. 240: 104398. doi:10.1016/j.earscirev.2023.104398. /wiki/Doi_(identifier)

  10. Javaux, Emmanuelle J.; Lepot, Kevin (January 2018). "The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth's middle-age". Earth-Science Reviews. 176: 68–86. Bibcode:2018ESRv..176...68J. doi:10.1016/j.earscirev.2017.10.001. hdl:20.500.12210/62416. S2CID 37069547. The identity of the [Francevillian biota] macrostructures remains unknown and their biogenicity is questionable https://doi.org/10.1016%2Fj.earscirev.2017.10.001

  11. Miao, Lanyun; Yin, Zongjun; Knoll, Andrew H.; Qu, Yuangao; Zhu, Maoyan (26 January 2024). "1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China". Science Advances. 10 (4): eadk3208. doi:10.1126/sciadv.adk3208. PMC 10807817. PMID 38266082. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807817

  12. Miao, Lanyun; Yin, Zongjun; Knoll, Andrew H.; Qu, Yuangao; Zhu, Maoyan (26 January 2024). "1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China". Science Advances. 10 (4): eadk3208. doi:10.1126/sciadv.adk3208. PMC 10807817. PMID 38266082. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10807817

  13. Liu, Jingqi; Zhang, Yang; Shi, Xiaoying; Chen, Anfeng; Tang, Dongjie; Yang, Tinglu (November 2023). "Macroscopic fossils from the Chuanlinggou Formation of North China: evidence for an earlier origin of multicellular algae in the late Palaeoproterozoic". Palaeontology. 66 (6). doi:10.1111/pala.12685. /wiki/Doi_(identifier)

  14. Bengtson, Stefan; Sallstedt, Therese; Belivanova, Veneta; Whitehouse, Martin (14 March 2017). "Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae". PLOS Biology. 15 (3): e2000735. doi:10.1371/journal.pbio.2000735. PMC 5349422. PMID 28291791. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349422

  15. Chen, Kai; Yang, Chuan; Miao, Lanyun; Zhao, Fangchen; Zhu, Maoyan (2024). "New SIMS U–Pb zircon age on the macroscopic multicellular eukaryotes from the early Mesoproterozoic Gaoyuzhuang Formation, North China". Geological Magazine. 161. doi:10.1017/S0016756824000220. /wiki/Doi_(identifier)

  16. Chen, Kai; Miao, Lanyun; Zhao, Fangchen; Zhu, Maoyan (July 2023). "Carbonaceous macrofossils from the early Mesoproterozoic Gaoyuzhuang Formation in the Yanshan Range, North China". Precambrian Research. 392: 107074. doi:10.1016/j.precamres.2023.107074. /wiki/Doi_(identifier)

  17. Shi, Min; Feng, Qinglai; Khan, Maliha Zareen; Zhu, Shixing (December 2017). "An eukaryote-bearing microbiota from the early mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and its significance". Precambrian Research. 303: 709–726. doi:10.1016/j.precamres.2017.09.013. /wiki/Doi_(identifier)

  18. Franz, Gerhard; Lyckberg, Peter; Khomenko, Vladimir; Chournousenko, Vsevolod; Schulz, Hans-Martin; Mahlstedt, Nicolaj; Wirth, Richard; Glodny, Johannes; Gernert, Ulrich; Nissen, Jörg (31 March 2022). "Fossilization of Precambrian microfossils in the Volyn pegmatite, Ukraine". Biogeosciences. 19 (6): 1795–1811. doi:10.5194/bg-19-1795-2022. https://doi.org/10.5194%2Fbg-19-1795-2022

  19. Franz, Gerhard; Khomenko, Vladimir; Lyckberg, Peter; Chournousenko, Vsevolod; Struck, Ulrich; Gernert, Ulrich; Nissen, Jörg (24 May 2023). "The Volyn biota (Ukraine) – indications of 1.5 Gyr old eukaryotes in 3D preservation, a spotlight on the "boring billion"". Biogeosciences. 20 (10): 1901–1924. doi:10.5194/bg-20-1901-2023. https://doi.org/10.5194%2Fbg-20-1901-2023

  20. Butterfield, Nicholas J. (2000). "Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes". Paleobiology. 26 (3): 386–404. doi:10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2. /wiki/Doi_(identifier)

  21. Butterfield, Nicholas J (October 2001). "Paleobiology of the late Mesoproterozoic (ca. 1200 Ma) Hunting Formation, Somerset Island, arctic Canada". Precambrian Research. 111 (1–4): 235–256. doi:10.1016/S0301-9268(01)00162-0. /wiki/Doi_(identifier)

  22. Slotznick, Sarah P.; Swanson-Hysell, Nicholas L.; Zhang, Yiming; Clayton, Katherine E.; Wellman, Charles H.; Tosca, Nicholas J.; Strother, Paul K. (22 August 2023). "Reconstructing the paleoenvironment of an oxygenated Mesoproterozoic shoreline and its record of life". Geological Society of America Bulletin. doi:10.1130/B36634.1. ISSN 0016-7606. Retrieved 21 May 2024 – via GeoScienceWorld. https://pubs.geoscienceworld.org/gsabulletin/article/doi/10.1130/B36634.1/627730/Reconstructing-the-paleoenvironment-of-an

  23. Strother, Paul K.; Wellman, Charles H. (30 November 2020). "The Nonesuch Formation Lagerstätte: a rare window into freshwater life one billion years ago". Journal of the Geological Society. 178 (2): 1–12. doi:10.1144/jgs2020-133. S2CID 229003508. https://doi.org/10.1144%2Fjgs2020-133

  24. Duda, Jan-Peter; König, Hannah; Reinhardt, Manuel; Shuvalova, Julia; Parkhaev, Pavel (8 December 2021). "Molecular fossils within bitumens and kerogens from the ~ 1 Ga Lakhanda Lagerstätte (Siberia, Russia) and their significance for understanding early eukaryote evolution". PalZ. 95 (4): 577–592. doi:10.1007/s12542-021-00593-4. ISSN 0031-0220. https://doi.org/10.1007%2Fs12542-021-00593-4

  25. Shuvalova, J. V.; Nagovitsin, K. E.; Parkhaev, P. Yu. (26 February 2021). "Evidences of the Oldest Trophic Interactions in the Riphean Biota (Lakhanda Lagerstätte, Southeastern Siberia)". Doklady Biological Sciences. 496 (1): 34–40. doi:10.1134/S0012496621010105. PMID 33635488. S2CID 254411264. Retrieved 30 April 2023. https://link.springer.com/article/10.1134/S0012496621010105

  26. Podkovyrov, Victor N. (September 2009). "Mesoproterozoic Lakhanda Lagerstätte, Siberia: Paleoecology and taphonomy of the microbiota". Precambrian Research. 173 (1–4): 146–153. Bibcode:2009PreR..173..146P. doi:10.1016/j.precamres.2009.04.006. Retrieved 30 April 2023. https://www.sciencedirect.com/science/article/abs/pii/S0301926809000965

  27. Turnbull, Matthew J. M.; Whitehouse, Martin J.; Moorbath, Stephen (November 1996). "New isotopic age determinations for the Torridonian, NW Scotland". Journal of the Geological Society. 153 (6): 955–964. doi:10.1144/gsjgs.153.6.0955. ISSN 0016-7649. Retrieved 21 May 2024. https://www.lyellcollection.org/doi/10.1144/gsjgs.153.6.0955

  28. Battison, Leila; Brasier, Martin D. (February 2012). "Remarkably preserved prokaryote and eukaryote microfossils within 1Ga-old lake phosphates of the Torridon Group, NW Scotland". Precambrian Research. 196–197: 204–217. doi:10.1016/j.precamres.2011.12.012. Retrieved 7 July 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S0301926811002749

  29. Nielson, Grace C.; Stüeken, Eva E.; Prave, Anthony R. (February 2024). "Estuaries house Earth's oldest known non-marine eukaryotes". Precambrian Research. 401: 107278. doi:10.1016/j.precamres.2023.107278. hdl:10023/28949. Retrieved 21 May 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S0301926823003182

  30. Maloney, Katie M.; Schiffbauer, James D.; Halverson, Galen P.; Xiao, Shuhai; Laflamme, Marc (13 April 2022). "Preservation of early Tonian macroalgal fossils from the Dolores Creek Formation, Yukon". Scientific Reports. 12 (1): 6222. Bibcode:2022NatSR..12.6222M. doi:10.1038/s41598-022-10223-x. PMC 9007953. PMID 35418588. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007953

  31. Mughal, Sanaa; Millikin, Alexie E. G.; Zhang, Tianran; Gibson, Timothy M.; Rooney, Alan D.; Tosca, Nicholas J.; Bergmann, Kristin D.; Strauss, Justin V.; Anderson, Ross P. (5 May 2025). "The Svanbergfjellet Formation: eukaryotic life in a Tonian Sea". Journal of the Geological Society. 182 (3). doi:10.1144/jgs2024-083. https://figshare.com/articles/journal_contribution/28151958

  32. Butterfield, Nicholas J.; Knoll, Andrew H.; Swett, Keene (15 July 1994). Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata. Vol. 34. pp. 1–84. doi:10.18261/8200376494-1994-01. ISBN 82-00-37649-4. 82-00-37649-4

  33. Sergeev, Vladimir N.; Schopf, J. William (1 May 2010). "Taxonomy, paleoecology and biostratigraphy of the late Neoproterozoic Chichkan microbiota of South Kazakhstan: The marine biosphere on the eve of metazoan radiation". Journal of Paleontology. 84 (3): 363–401. Bibcode:2010JPal...84..363S. doi:10.1666/09-133.1. S2CID 140668863. Retrieved 30 April 2023. https://pubs.geoscienceworld.org/jpaleontol/article-abstract/84/3/363/108791/TAXONOMY-PALEOECOLOGY-AND-BIOSTRATIGRAPHY-OF-THE

  34. Willman, Sebastian; Peel, John S.; Ineson, Jon R.; Schovsbo, Niels H.; Rugen, Elias J.; Frei, Robert (6 November 2020). "Ediacaran Doushantuo-type biota discovered in Laurentia". Communications Biology. 3 (1): 647. doi:10.1038/s42003-020-01381-7. PMC 7648037. PMID 33159138. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648037

  35. Becker-Kerber, Bruno; El Albani, Abderrazak; Konhauser, Kurt; Abd Elmola, Ahmed; Fontaine, Claude; Paim, Paulo S. G.; Mazurier, Arnaud; Prado, Gustavo M. E. M.; Galante, Douglas; Kerber, Pedro B.; da Rosa, Ana L. Z.; Fairchild, Thomas R.; Meunier, Alain; Pacheco, Mírian L. A. F. (3 March 2021). "The role of volcanic-derived clays in the preservation of Ediacaran biota from the Itajaí Basin (ca. 563 Ma, Brazil)". Scientific Reports. 11 (1): 5013. doi:10.1038/s41598-021-84433-0. ISSN 2045-2322. PMC 7930025. PMID 33658558. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7930025

  36. Xiao, Shuhai; Chen, Zhe; Pang, Ke; Zhou, Chuanming; Yuan, Xunlai (12 October 2020). "The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition". Journal of the Geological Society. 178: 1–11. doi:10.1144/jgs2020-135. S2CID 225242787. Retrieved 30 April 2023. https://www.lyellcollection.org/doi/full/10.1144/jgs2020-135

  37. Cai, Yaoping; Hua, Hong; Schiffbauer, James D.; Sun, Bo; Yuan, Xunlai (April 2014). "Tube growth patterns and microbial mat-related lifestyles in the Ediacaran fossil Cloudina, Gaojiashan Lagerstätte, South China". Gondwana Research. 25 (3): 1008–1018. Bibcode:2014GondR..25.1008C. doi:10.1016/j.gr.2012.12.027. Retrieved 18 June 2023. https://www.sciencedirect.com/science/article/abs/pii/S1342937X1300052X

  38. Feng, Tang; Chongyu, Yin; Pengju, Liu; Linzhi, Gao; Wenyan, Zhang (7 September 2010). "A New Diverse Macrofossil Lagerstätte from the Uppermost Ediacaran of Southwestern China". Acta Geologica Sinica - English Edition. 82 (6): 1095–1103. doi:10.1111/j.1755-6724.2008.tb00709.x. ISSN 1000-9515. Retrieved 21 May 2024. https://onlinelibrary.wiley.com/doi/10.1111/j.1755-6724.2008.tb00709.x

  39. Duda, Jan-Peter; Love, Gordon D.; Rogov, Vladimir I.; Melnyk, Dmitry S.; Blumenberg, Martin; Grazhdankin, Dmitriy V. (3 September 2020). "Understanding the geobiology of the terminal Ediacaran Khatyspyt Lagerstätte (Arctic Siberia, Russia)". Geobiology. 18 (6): 643–662. Bibcode:2020Gbio...18..643D. doi:10.1111/gbi.12412. PMID 32881267. S2CID 221477265. https://doi.org/10.1111%2Fgbi.12412

  40. National Museum of Natural History, National Academy of Sciences of Ukraine (Kyiv, Ukraine); Grytsenko, Volodymyr (2 October 2020). "Diversity of the Vendian fossils of Podillia (Western Ukraine)". Geo&Bio. 2020 (19): 3–19. doi:10.15407/gb1903.{{cite journal}}: CS1 maint: multiple names: authors list (link) http://museumkiev.org/public/visnyk/19_2020/gb1903-grytsenko.html

  41. Shao, Tiequan; Tang, Hanhua; Liu, Yunhuan; Waloszek, Dieter; Maas, Andreas; Zhang, Huaqiao (March 2018). "Diversity of cnidarians and cycloneuralians in the Fortunian (early Cambrian) Kuanchuanpu Formation at Zhangjiagou, South China". Journal of Paleontology. 92 (2): 115–129. doi:10.1017/jpa.2017.94. ISSN 0022-3360. Retrieved 14 May 2024 – via Cambridge Core. https://www.cambridge.org/core/product/identifier/S0022336017000944/type/journal_article

  42. Shao, T. Q.; Qin, J. C.; Shao, Y.; Liu, Y. H.; Waloszek, D.; Maas, A.; Duan, B. C.; Wang, Q.; Xu, Y.; Zhang, H. Q. (October 2020). "New macrobenthic cycloneuralians from the Fortunian (lowermost Cambrian) of South China". Precambrian Research. 349: 105413. doi:10.1016/j.precamres.2019.105413. Retrieved 14 May 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S0301926819301366

  43. Liu, Yunhuan; Qin, Jiachen; Wang, Qi; Maas, Andreas; Duan, Baichuan; Zhang, Yanan; Zhang, Hu; Shao, Tiequan; Zhang, Huaqiao (19 October 2018). Zhang, Xi-Guang (ed.). "New armoured scalidophorans (Ecdysozoa, Cycloneuralia) from the Cambrian Fortunian Zhangjiagou Lagerstätte, South China". Papers in Palaeontology. 5 (2): 241–260. doi:10.1002/spp2.1239. ISSN 2056-2799. Retrieved 14 May 2024 – via Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1002/spp2.1239

  44. Han, Jian; Morris, Simon Conway; Ou, Qiang; Shu, Degan; Huang, Hai (9 February 2017). "Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China)". Nature. 542 (7640): 228–231. doi:10.1038/nature21072. ISSN 0028-0836. PMID 28135722. Retrieved 14 May 2024. https://www.nature.com/articles/nature21072

  45. Zhang, Xi-guang; Siveter, David J.; Waloszek, Dieter; Maas, Andreas (4 October 2007). "An epipodite-bearing crown-group crustacean from the Lower Cambrian". Nature. 449 (7162): 595–598. doi:10.1038/nature06138. PMID 17914395. /wiki/Doi_(identifier)

  46. Lan, Tian; Yang, Jie; Zhang, Xi-guang; Hou, Jin-bo (15 June 2018). "A new macroalgal assemblage from the Xiaoshiba Biota (Cambrian Series 2, Stage 3) of southern China". Palaeogeography, Palaeoclimatology, Palaeoecology. 499: 35–44. doi:10.1016/j.palaeo.2018.02.029. ISSN 0031-0182. Retrieved 13 September 2024 – via Elsevier Science Direct. https://www.sciencedirect.com/science/article/abs/pii/S0031018217308969

  47. Li, Wei; Yang, Jie; Yang, Xiaoyu; Dhungana, Alavya; Wang, Yu; Zhang, Xiguang; Smith, Martin R. (November 2024). "Omnidens appendages and the origin of radiodont mouthparts". Papers in Palaeontology. 10 (6). doi:10.1002/spp2.1600. /wiki/Doi_(identifier)

  48. English, Adam M.; Babcock, Loren E. (1 September 2010). "Census of the Indian Springs Lagerstätte, Poleta Formation (Cambrian), western Nevada, USA". Palaeogeography, Palaeoclimatology, Palaeoecology. 295 (1): 236–244. doi:10.1016/j.palaeo.2010.05.041. ISSN 0031-0182. https://www.sciencedirect.com/science/article/pii/S0031018210003287

  49. Ivantsov, Andrey Yu.; Zhuravlev, Andrey Yu.; Leguta, Anton V.; Krassilov, Valentin A.; Melnikova, Lyudmila M.; Ushatinskaya, Galina T. (2 May 2005). "Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform". Palaeogeography, Palaeoclimatology, Palaeoecology. 220 (1–2): 69–88. Bibcode:2005PPP...220...69I. doi:10.1016/j.palaeo.2004.01.022. Retrieved 12 November 2022. https://www.sciencedirect.com/science/article/abs/pii/S0031018204005784#!

  50. Chen, Feiyang; Brock, Glenn A.; Zhang, Zhiliang; Laing, Brittany; Ren, Xinyi; Zhang, Zhifei (January 2021). "Brachiopod-dominated communities and depositional environment of the Guanshan Konservat-Lagerstätte, eastern Yunnan, China". Journal of the Geological Society. 178 (1). doi:10.1144/jgs2020-043. https://doi.org/10.1144%2Fjgs2020-043

  51. Caron, Jean-Bernard; Webster, Mark; Briggs, Derek E. G.; Pari, Giovanni; Santucci, Guy; Mángano, M. Gabriela; Izquierdo-López, Alejandro; Streng, Michael; Gaines, Robert R. (13 December 2023). "The lower Cambrian Cranbrook Lagerstätte of British Columbia". Journal of the Geological Society. 181 (1). doi:10.1144/jgs2023-106. ISSN 0016-7649. Retrieved 7 July 2024 – via Lyell Collection Geological Society Publications. https://www.lyellcollection.org/doi/10.1144/jgs2023-106

  52. Weisberger, Mindy (9 July 2024). "'Prehistoric Pompeii' reveals 515 million-year-old sea bugs' anatomy in pristine 3D". CNN. Retrieved 13 July 2024. https://www.cnn.com/2024/07/09/science/trilobite-fossils-discovery-volcanic-ash/index.html

  53. Pari, Giovanni; Briggs, Derek E.G.; Gaines, Robert R. (22 February 2021). "The Parker Quarry Lagerstätte of Vermont—The first reported Burgess Shale–type fauna rediscovered". Geology. 49 (6): 693–697. doi:10.1130/g48422.1. ISSN 0091-7613. https://doi.org/10.1130/G48422.1

  54. Gámez Vintaned, J. A.; Liñán, E. y Gozalo, R. (2013) «Los trilobites cámbricos de la Biota de Murero (Zaragoza, España)». Cuadernos de Paleontología Aragonesa, 7: 5-27

  55. Peel, John S. (3 April 2022). "The oldest tongue worm: a stem-group pentastomid arthropod from the early middle Cambrian (Wuliuan Stage) of North Greenland (Laurentia)". GFF. 144 (2): 97–105. doi:10.1080/11035897.2022.2064543. /wiki/Doi_(identifier)

  56. Department of Earth Sciences (Palaeobiology), Uppsala University, Sweden.; Peel, John S. (7 June 2023). "A phosphatised fossil Lagerstätte from the middle Cambrian (Wuliuan Stage) of North Greenland (Laurentia)". Bulletin of the Geological Society of Denmark. 72: 101–122. doi:10.37570/bgsd-2023-72-03. Retrieved 7 July 2024.{{cite journal}}: CS1 maint: multiple names: authors list (link) https://2dgf.dk/publikationer/bulletin/bulletin-volume-72-2023/#3

  57. Johnston, Kimberley J.; Johnston, Paul A.; Powell, Wayne G. (June 2009). "A new, Middle Cambrian, Burgess Shale-type biota, Bolaspidella Zone, Chancellor Basin, southeastern British Columbia". Palaeogeography, Palaeoclimatology, Palaeoecology. 277 (1–2): 106–126. doi:10.1016/j.palaeo.2009.02.015. /wiki/Doi_(identifier)

  58. Sun, Z.; Zhao, F.; Zeng, H.; Luo, C.; Van Iten, H.; Zhu, M. (2022). "The middle Cambrian Linyi Lagerstätte from the North China Craton: a new window on the Cambrian evolutionary fauna". National Science Review. 9 (7): nwac069. doi:10.1093/nsr/nwac069. PMC 9273334. PMID 35832778. Retrieved 2 April 2023. https://academic.oup.com/nsr/article/9/7/nwac069/6563905

  59. Kimmig, Julien; Pratt, Brian R. (29 July 2015). "Taphonomy of the middle Cambrian (Drumian) Ravens Throat River Lagerstätte, Rockslide Formation, Mackenzie Mountains, Northwest Territories, Canada". Lethaia. 49 (2): 150–169. doi:10.1111/let.12135. ISSN 0024-1164. https://www.idunn.no/doi/10.1111/let.12135

  60. Saleh, Farid; Lustri, Lorenzo; Gueriau, Pierre; Potin, Gaëtan J.-M.; Pérez-Peris, Francesc; Laibl, Lukáš; Jamart, Valentin; Vite, Antoine; Antcliffe, Jonathan B.; Daley, Allison C.; Nohejlová, Martina; Dupichaud, Christophe; Schöder, Sebastian; Bérard, Emilie; Lynch, Sinéad; Drage, Harriet B.; Vauchier, Romain; Vidal, Muriel; Monceret, Eric; Monceret, Sylvie; Lefebvre, Bertrand (9 February 2024). "The Cabrières Biota (France) provides insights into Ordovician polar ecosystems". Nature Ecology & Evolution. 8 (4): 651–662. doi:10.1038/s41559-024-02331-w. ISSN 2397-334X. PMC 11009115. PMID 38337049. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009115

  61. Fang, Xiang; Mao, Yingyan; Liu, Qi; Yuan, Wenwei; Chen, Zhongyang; Wu, Rongchang; Li, Lixia; Zhang, Yuchen; Ma, Junye; Wang, Wenhui; Zhan, Renbin; Peng, Shanchi; Zhang, Yuandong; Huang, Diying (13 July 2022). "The Liexi fauna: a new Lagerstätte from the Lower Ordovician of South China". Proceedings of the Royal Society B: Biological Sciences. 289 (1978). doi:10.1098/rspb.2022.1027. ISSN 0962-8452. PMC 9277276. PMID 35858062. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277276

  62. Young, Graham; Rudkin, David; Dobrzanski, Edward; Robson, Sean; Cuggy, Michael; Demski, Matthew; Thompson, Deborah (2012). "Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba". Geoscience Canada. 39 (4): 201–213. ISSN 0315-0941. https://www.erudit.org/en/journals/geocan/2012-v39-n4-geocan39_4/geocan39_4ser01/

  63. Liu, Huaibao P.; Bergström, Stig M.; Witzke, Brian J.; Briggs, Derek E. G.; McKay, Robert M.; Ferretti, Annalisa (28 February 2017). "Exceptionally preserved conodont apparatuses with giant elements from the Middle Ordovician Winneshiek Konservat-Lagerstätte, Iowa, USA". Journal of Paleontology. 91 (3): 493–511. Bibcode:2017JPal...91..493L. doi:10.1017/jpa.2016.155. S2CID 132698401. https://doi.org/10.1017%2Fjpa.2016.155

  64. Young, Graham; Rudkin, David; Dobrzanski, Edward; Robson, Sean; Cuggy, Michael; Demski, Matthew; Thompson, Deborah (2012). "Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba". Geoscience Canada. 39 (4): 201–213. ISSN 0315-0941. https://www.erudit.org/en/journals/geocan/2012-v39-n4-geocan39_4/geocan39_4ser01/

  65. Selina R. Cole; David F. Wright; William I. Ausich (1 May 2019). "Phylogenetic community paleoecology of one of the earliest complex crinoid faunas (Brechin Lagerstätte, Ordovician)". Palaeogeography, Palaeoclimatology, Palaeoecology. 521: 82–98. Bibcode:2019PPP...521...82C. doi:10.1016/j.palaeo.2019.02.006. S2CID 135129430. https://doi.org/10.1016%2Fj.palaeo.2019.02.006

  66. García-Bellido, Diego C.; Gutiérrez-Marco, Juan Carlos (29 October 2022). "Polar gigantism and remarkable taxonomic longevity in new palaeoscolecid worms from the Late Ordovician Tafilalt Lagerstätte of Morocco". Historical Biology. 35 (11): 2011–2021. doi:10.1080/08912963.2022.2131404. ISSN 0891-2963. S2CID 253297071. https://dx.doi.org/10.1080/08912963.2022.2131404

  67. Young, Graham; Rudkin, David; Dobrzanski, Edward; Robson, Sean; Cuggy, Michael; Demski, Matthew; Thompson, Deborah (2012). "Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba". Geoscience Canada. 39 (4): 201–213. ISSN 0315-0941. https://www.erudit.org/en/journals/geocan/2012-v39-n4-geocan39_4/geocan39_4ser01/

  68. Knaust, Dirk; Desrochers, André (July 2019). "Exceptionally preserved soft-bodied assemblage in Ordovician carbonates of Anticosti Island, eastern Canada". Gondwana Research. 71: 117–128. doi:10.1016/j.gr.2019.01.016. /wiki/Doi_(identifier)

  69. Young, Graham; Rudkin, David; Dobrzanski, Edward; Robson, Sean; Cuggy, Michael; Demski, Matthew; Thompson, Deborah (2012). "Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba". Geoscience Canada. 39 (4): 201–213. ISSN 0315-0941. https://www.erudit.org/en/journals/geocan/2012-v39-n4-geocan39_4/geocan39_4ser01/

  70. Young, Graham; Rudkin, David; Dobrzanski, Edward; Robson, Sean; Cuggy, Michael; Demski, Matthew; Thompson, Deborah (2012). "Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba". Geoscience Canada. 39 (4): 201–213. ISSN 0315-0941. https://www.erudit.org/en/journals/geocan/2012-v39-n4-geocan39_4/geocan39_4ser01/

  71. Young, Graham; Rudkin, David; Dobrzanski, Edward; Robson, Sean; Cuggy, Michael; Demski, Matthew; Thompson, Deborah (2012). "Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba". Geoscience Canada. 39 (4): 201–213. ISSN 0315-0941. https://www.erudit.org/en/journals/geocan/2012-v39-n4-geocan39_4/geocan39_4ser01/

  72. Ausich, William I.; Wilson, Mark A.; Tinn, Oive (14 May 2019). "Kalana Lagerstätte crinoids: Early Silurian (Llandovery) of central Estonia". Journal of Paleontology. 94 (1): 131–144. doi:10.1017/jpa.2019.27. S2CID 181399467. Retrieved 27 April 2023. https://www.cambridge.org/core/journals/journal-of-paleontology/article/abs/kalana-lagerstatte-crinoids-early-silurian-llandovery-of-central-estonia/B6F78AF4B4DC8CD22133091426A77E27

  73. Tinn, Oive; Lang, Liisa; Märss, Tiiu; Vahur, Signu; Kirsimäe, Kalle (6 May 2022). "A demineralized osteostracan fossil from the Silurian Kalana Lagerstätte of Estonia: revealing its internal anatomy and uncovering a unique type of fossilization". Lethaia. 55 (1): 1–13. doi:10.1111/let.12452. https://doi.org/10.1111%2Flet.12452

  74. Zhu, You-an; Li, Qiang; Lu, Jing; Chen, Yang; Wang, Jianhua; Gai, Zhikun; Zhao, Wenjin; Wei, Guangbiao; Yu, Yilun; Ahlberg, Per E.; Zhu, Min (2022). "The oldest complete jawed vertebrates from the early Silurian of China". Nature. 609 (7929): 954–958. Bibcode:2022Natur.609..954Z. doi:10.1038/s41586-022-05136-8. ISSN 1476-4687. PMID 36171378. S2CID 252569910. https://www.nature.com/articles/s41586-022-05136-8

  75. BBC. "Fossils found in 425 million year old 'Pompeii'". www.bbc.co.uk. Retrieved 7 October 2023. https://www.bbc.co.uk/herefordandworcester/content/articles/2009/06/01/herefordshire_fossils_feature.shtml

  76. Vrazo, Matthew B.; Trop, Jeffrey M.; Brett, Carlton E. (2014). "A New Eurypterid Lagerstätte from the Upper Silurian of Pennsylvania". PALAIOS. 29 (7/8): 431–448. Bibcode:2014Palai..29..431V. doi:10.2110/palo.2014.003. ISSN 0883-1351. JSTOR 43683811. S2CID 30066085. https://www.jstor.org/stable/43683811

  77. Taylor, Wendy L. (28 October 1999), "Middle Silurian Rochester Shale of Western New York, USA, and Southern Ontario, Canada", Fossil Crinoids, Cambridge University Press, pp. 87–92, doi:10.1017/cbo9780511626159.012, ISBN 9780521450249, retrieved 9 October 2023 9780521450249

  78. Glasspool, I.J.; Edwards, D.; Axe, L. (December 2006). "Charcoal in the Early Devonian: A wildfire-derived Konservat–Lagerstätte". Review of Palaeobotany and Palynology. 142 (3–4): 131–136. doi:10.1016/j.revpalbo.2006.03.021. Retrieved 8 April 2025 – via Elsevier Science Direct. https://www.sciencedirect.com/science/article/abs/pii/S0034666706001369

  79. Morris, Jennifer L.; Edwards, Dianne; Richardson, John B. (2018), "The Advantages and Frustrations of a Plant Lagerstätte as Illustrated by a New Taxon From the Lower Devonian of the Welsh Borderland, UK", Transformative Paleobotany, Elsevier, pp. 49–67, doi:10.1016/b978-0-12-813012-4.00004-8, ISBN 978-0-12-813012-4, retrieved 13 April 2025 978-0-12-813012-4

  80. Poschmann, Markus J. (3 February 2021). "A new phyllocarid (Crustacea, Archaeostraca) from the Early Devonian (late Emsian) Heckelmann Mill Fossil-Lagerstätte (Lahn Syncline, Rhineland-Palatinate, SW-Germany)". PalZ. 95: 27–36. doi:10.1007/s12542-020-00535-6. S2CID 231793893. Retrieved 29 April 2023. https://link.springer.com/article/10.1007/s12542-020-00535-6

  81. Poschmann, Markus J. (15 July 2019). "Pelmatozoan "rooting grounds" from the Early Devonian (late Emsian) Heckelmann Mill Fossil-Lagerstätte (Lahn Syncline, Rhineland-Palatinate, SW-Germany): morphological, palaeoenvironmental and taphonomic aspects". PalZ. 94 (2): 311–325. doi:10.1007/s12542-019-00454-1. S2CID 198137119. Retrieved 29 April 2023. https://link.springer.com/article/10.1007/s12542-019-00454-1

  82. Zatoń, Michał; Filipiak, Paweł; Rakociński, Michał; Krawczyński, Wojciech (25 March 2014). "Kowala Lagerstätte: Late Devonian arthropods and non-biomineralized algae from Poland". Lethaia. 47 (3): 352–364. doi:10.1111/let.12062. Retrieved 29 June 2023. https://onlinelibrary.wiley.com/doi/abs/10.1111/let.12062

  83. Frey, Linda; Pohle, Alexander; Rücklin, Martin; Klug, Christian (2020). "Fossil-Lagerstätten, palaeoecology and preservation of invertebrates and vertebrates from the Devonian in the eastern Anti-Atlas, Morocco". Lethaia. 53 (2): 242–266. doi:10.1111/let.12354. ISSN 0024-1164. S2CID 210627752. https://www.idunn.no/doi/10.1111/let.12354

  84. Denayer, Julien; Prestianni, Cyrille; Gueriau, Pierre; Olive, Sébastien; Clément, Gaël (2016). "Stratigraphy and depositional environments of the Late Famennian (Late Devonian) of Southern Belgium and characterization of the Strud locality". Geological Magazine. 153 (1): 112–127. Bibcode:2016GeoM..153..112D. doi:10.1017/S001675681500031X. ISSN 0016-7568. S2CID 129070535. https://www.cambridge.org/core/journals/geological-magazine/article/abs/stratigraphy-and-depositional-environments-of-the-late-famennian-late-devonian-of-southern-belgium-and-characterization-of-the-strud-locality/BAFD866A0B080EAFA24836F73F437EBD

  85. Olive, Sébastien; Clément, Gaël; Daeschler, Edward B.; Dupret, Vincent (23 August 2016). "Placoderm Assemblage from the Tetrapod-Bearing Locality of Strud (Belgium, Upper Famennian) Provides Evidence for a Fish Nursery". PLOS ONE. 11 (8): e0161540. Bibcode:2016PLoSO..1161540O. doi:10.1371/journal.pone.0161540. ISSN 1932-6203. PMC 4994939. PMID 27552196. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4994939

  86. Fraser, Nicholas C.; Sues, Hans-Dieter (2017). Terrestrial Conservation Lagerstätten: Windows Into the Evolution of Life on Land. Dunedin Academic Press. ISBN 978-1-78046-014-7. 978-1-78046-014-7

  87. Knecht, Richard J.; Benner, Jacob S.; Swain, Anshuman; Azevedo-Schmidt, Lauren; Cleal, Christopher J.; Labandeira, Conrad C.; Engel, Michael S.; Dunlop, Jason A.; Selden, Paul A.; Eble, Cortland F.; Renczkowski, Mark D.; Wheeler, Dillon A.; Funderburk, Mataeus M.; Emma, Steve L.; Knoll, Andrew H.; Pierce, Naomi E. (9 September 2024). "Early Pennsylvanian Lagerstätte reveals a diverse ecosystem on a subhumid, alluvial fan". Nature Communications. 15 (1): 7876. doi:10.1038/s41467-024-52181-0. ISSN 2041-1723. PMC 11383953. PMID 39251605. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383953

  88. Anderson, Lyall I.; Dunlop, Jason A.; Horrocks, Carl A.; Winkelmann, Heather M.; Eagar, R. M. C. (1997). "Exceptionally preserved fossils from Bickershaw, Lancashire UK (Upper Carboniferous, Westphalian A (Langsettian))". Geological Journal. 32 (3): 197–210. doi:10.1002/(SICI)1099-1034(199709)32:3<197::AID-GJ739>3.0.CO;2-6. https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1034(199709)32:33.0.CO;2-6

  89. Orr, Patrick J.; Briggs, Derek E. G.; Parkes, Matthew A. (1996). "The 'Castlecomer Fauna': A New Konservat-Lagerstätte from the Upper Carboniferous of Ireland". Irish Journal of Earth Sciences. 15: 93–106. ISSN 0790-1763. JSTOR 30002319. https://www.jstor.org/stable/30002319

  90. Orr, P. J.; Briggs, D. E.G.; Kearns, S. L. (1 May 2008). "Taphonomy of Exceptionally Preserved Crustaceans from the Upper Carboniferous of Southeastern Ireland". PALAIOS. 23 (5): 298–312. doi:10.2110/palo.2007.p07-015r. ISSN 0883-1351. https://pubs.geoscienceworld.org/palaios/article/23/5/298-312/145985

  91. "Direct Evidence of Food Chains at the Linton Lagerstatte". gsa.confex.com. https://gsa.confex.com/gsa/2008NE/finalprogram/abstract_135299.htm

  92. Dunne, Emma M. (1 July 2020). Patterns and drivers of tetrapod diversity and biogeography in the late Palaeozoic and early Mesozoic (d_ph thesis). University of Birmingham. https://etheses.bham.ac.uk/id/eprint/9904/

  93. Hook, Robert W.; Baird, Donald (19 June 1986). "The Diamond Coal Mine of Linton, Ohio, and its Pennsylvanian-age vertebrates". Journal of Vertebrate Paleontology. 6 (2): 174–190. Bibcode:1986JVPal...6..174H. doi:10.1080/02724634.1986.10011609. ISSN 0272-4634. http://www.tandfonline.com/doi/abs/10.1080/02724634.1986.10011609

  94. Niko, Shuji; Seuss, Barbara; Mapes, Royal H. (1 January 2018). "Desmoinesian (Middle Pennsylvanian) Orthocerid Cephalopods from the Buckhorn Asphalt Lagerstätte in Oklahoma, Midcontinent North America". Paleontological Research. 22 (1): 20–36. doi:10.2517/2017PR008. ISSN 1342-8144. Retrieved 12 May 2024 – via BioOne Digital Library. http://www.bioone.org/doi/10.2517/2017PR008

  95. M. Hodnett, John-Paul; Lucas, Spencer G. "Review Of The Late Pennsylvanian Fish Assemblage From The Kinney Brick Quarry, New Mexico". New Mexico Museum of Natural History and Science Bulletin. 84: 359–390. https://www.researchgate.net/publication/350890018

  96. Cardoso, Alexandre Ribeiro; Schmidt, Jaques Soares; Bernardes, Eduardo Müller; Maraschin, Anderson José; de Coelho Andrade, Débora; de Medeiros Albano, Filipe; Rübensam, Gabriel; Barp, Gustavo Bombardelli; Kich, Juliana Nichele; Rodrigues, Naira Poerner; de Oliveira, Yasmin Felix; Zielinski, João Pedro Tauscheck; Weinschütz, Luiz Carlos; Vazquez, Joselito Cabral; Vecchia, Felipe Dalla (1 February 2025). "Organic matter sources, accumulation and diagenesis of the Lontras Shale Lagerstätte (Paraná Basin, southern Brazil)". Palaeogeography, Palaeoclimatology, Palaeoecology. 659: 112661. doi:10.1016/j.palaeo.2024.112661. ISSN 0031-0182. https://www.sciencedirect.com/science/article/abs/pii/S0031018224006503

  97. Boardman, Daiana Rockenbach; Souza, Paulo A.; Scomazzon, Ana Karina; Félix, Cristina Moreira; Mori, Ana Luisa Outa; Weinschütz, Luiz Carlos (January 2024). "Palynological analysis (biochronostratigraphy and paleoenvironments) from a fossil-Lagerstätte section within the Late Paleozoic Ice Age unit of the Paraná Basin (Itararé Group), Western Gondwana". Sedimentary Geology. 459: 106543. doi:10.1016/j.sedgeo.2023.106543. Retrieved 8 June 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S0037073823002154

  98. Perrier, V.; Charbonnier, S. (2014). "The Montceau-les-Mines Lagerstätte (Late Carboniferous, France)". Comptes Rendus Palevol. 13 (5): 353–67. Bibcode:2014CRPal..13..353P. doi:10.1016/j.crpv.2014.03.002. /wiki/Comptes_Rendus_Palevol

  99. Heyler, Daniel; Poplin, Cecile M. (1988). "The Fossils of Montceau-les-Mines". Scientific American. 259 (3): 104–111. Bibcode:1988SciAm.259c.104H. doi:10.1038/scientificamerican0988-104. ISSN 0036-8733. JSTOR 24989233. https://www.jstor.org/stable/24989233

  100. "NMGS 2016 Guidebook Details". New Mexico Geological Society. doi:10.56577/ffc-67.377. Retrieved 18 December 2023. https://nmgs.nmt.edu/publications/guidebooks/details.cfml?ID=131434

  101. Schmitz, Mark D.; Pfefferkorn, Hermann W.; Shen, Shu-Zhong; Wang, Jun (1 November 2021). "A volcanic tuff near the Carboniferous–Permian boundary, Taiyuan Formation, North China: Radioisotopic dating and global correlation". Review of Palaeobotany and Palynology. Wuda Tuff Flora: A Permian peat-forming T0 fossil plant assemblage from Wuda Coalfield, Inner Mongolia. 294: 104244. doi:10.1016/j.revpalbo.2020.104244. ISSN 0034-6667. https://linkinghub.elsevier.com/retrieve/pii/S0034666719303343

  102. Wang, Jun; Hilton, Jason; Pfefferkorn, Hermann W.; Wang, Shijun; Zhang, Yi; Bek, Jiri; Pšenička, Josef; Seyfullah, Leyla J.; Dilcher, David (16 March 2021). "Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation". Proceedings of the National Academy of Sciences. 118 (11). doi:10.1073/pnas.2013442118. ISSN 0027-8424. PMC 7980368. PMID 33836571. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980368

  103. Schoch, Rainer R. (23 March 2021). "Osteology of the Permian temnospondyl amphibian Glanochthon lellbachae and its relationships". Fossil Record. 24 (1): 49–64. doi:10.5194/fr-24-49-2021. ISSN 2193-0066. https://fr.copernicus.org/articles/24/49/2021/

  104. Poschmann, Markus J.; Nel, André; Raisch, Manfred (1 March 2024). "Diversity and variability of grylloblattidan insects (Grylloblattida) from the early Permian Meisenheim Formation of the Saar-Nahe Basin (SW-Germany)". PalZ. 98 (1): 67–84. doi:10.1007/s12542-023-00672-8. ISSN 1867-6812. https://doi.org/10.1007/s12542-023-00672-8

  105. Steyer, J.-Sébastien; Sanchez, Sophie; Debriette, Pierre J.; Valli, Andrea M. F.; Escuille, François; Pohl, Burkhard; Dechambre, Roger-Paul; Vacant, Renaud; Spence, Christopher; De Ploëg, Gaël (1 December 2012). "A new vertebrate Lagerstätte from the Lower Permian of France (Franchesse, Massif Central): palaeoenvironmental implications for the Bourbon-l'Archambault basin". Bulletin de la Société Géologique de France. 183 (6): 509–515. doi:10.2113/gssgfbull.183.6.509. Retrieved 29 April 2023. https://pubs.geoscienceworld.org/sgf/bsgf/article-abstract/183/6/509/314022/A-new-vertebrate-Lagerstatte-from-the-Lower

  106. Luthardt, Ludwig; Rößler, Ronny; Schneider, Joerg W. (1 January 2016). "Palaeoclimatic and site-specific conditions in the early Permian fossil forest of Chemnitz—Sedimentological, geochemical and palaeobotanical evidence". Palaeogeography, Palaeoclimatology, Palaeoecology. 441: 627–652. Bibcode:2016PPP...441..627L. doi:10.1016/j.palaeo.2015.10.015. Retrieved 8 June 2022. https://www.sciencedirect.com/science/article/pii/S0031018215005775

  107. Piñeiro, G.; Ramos, A.; Goso, C. S.; Scarabino, F.; Laurin, M. (2012). "Unusual Environmental Conditions Preserve a Permian Mesosaur-Bearing Konservat-Lagerstätte from Uruguay". Acta Palaeontologica Polonica. 57 (2): 299–318. doi:10.4202/app.2010.0113. https://doi.org/10.4202%2Fapp.2010.0113

  108. Khramov, Alexander V.; Naugolnykh, Sergey V.; Węgierek, Piotr (12 September 2022). "Possible long-proboscid insect pollinators from the Early Permian of Russia". Current Biology. 32 (17): 3815–3820.e2. doi:10.1016/j.cub.2022.06.085. ISSN 0960-9822. PMID 35858616. https://doi.org/10.1016%2Fj.cub.2022.06.085

  109. Slater, Ben J.; McLoughlin, Stephen; Hilton, Jason (June 2015). "A high-latitude Gondwanan lagerstätte: The Permian permineralised peat biota of the Prince Charles Mountains, Antarctica". Gondwana Research. 27 (4): 1446–1473. Bibcode:2015GondR..27.1446S. doi:10.1016/j.gr.2014.01.004. https://doi.org/10.1016%2Fj.gr.2014.01.004

  110. Prevec, Rosemary; Nel, André; Day, Michael O.; Muir, Robert A.; Matiwane, Aviwe; Kirkaldy, Abigail P.; Moyo, Sydney; Staniczek, Arnold; Cariglino, Bárbara; Maseko, Zolile; Kom, Nokuthula; Rubidge, Bruce S.; Garrouste, Romain; Holland, Alexandra; Barber-James, Helen M. (30 October 2022). "South African Lagerstätte reveals middle Permian Gondwanan lakeshore ecosystem in exquisite detail". Communications Biology. 5 (1): 1154. doi:10.1038/s42003-022-04132-y. PMC 9618562. PMID 36310243. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618562

  111. Benton, M. J. (6 November 1989). "Mass extinctions among tetrapods and the quality of the fossil record". Philosophical Transactions of the Royal Society of London. B, Biological Sciences. 325 (1228): 369–386. Bibcode:1989RSPTB.325..369B. doi:10.1098/rstb.1989.0094. ISSN 0080-4622. PMID 2574883. https://royalsocietypublishing.org/doi/10.1098/rstb.1989.0094

  112. Neregato, R.; D'Apolito, C.; Glasspool, I. J.; Wang, S.-J.; Liu, F.; Windslow, P.; Lu, J.; Shao, L.; Hilton, J. (15 May 2016). "Palynological constraints on the provenance and stratigraphic range of a Lopingian (Late Permian) inter-extinction floral lagerstätte from the Xuanwei Formation, Guizhou Province, China". International Journal of Coal Geology. 162: 139–150. Bibcode:2016IJCG..162..139N. doi:10.1016/j.coal.2016.06.005. S2CID 132822933. Retrieved 18 June 2023. https://www.sciencedirect.com/science/article/abs/pii/S0166516216302762

  113. Dai, Xu; Davies, Joshua H.F.L.; Yuan, Zhiwei; Brayard, Arnaud; Ovtcharova, Maria; Xu, Guanghui; Liu, Xiaokang; Smith, Christopher P.A.; Schweitzer, Carrie E.; Li, Mingtao; Perrot, Morgann G.; Jiang, Shouyi; Miao, Luyi; Cao, Yiran; Yan, Jia; Bai, Ruoyu; Wang, Fengyu; Guo, Wei; Song, Huyue; Tian, Li; Dal Corso, Jacopo; Liu, Yuting; Chu, Daoliang; Song, Haijun (2023). "A Mesozoic fossil lagerstätte from 250.8 million years ago shows a modern-type marine ecosystem" (PDF). Science. 379 (6632): 567–572. Bibcode:2023Sci...379..567D. doi:10.1126/science.adf1622. PMID 36758082. S2CID 256697946. https://u-bourgogne.hal.science/hal-04016004/file/Dai%20et%20al.%20MS%20Version%20HAL.pdf

  114. Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles (2017). "Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna". Science Advances. 3 (2): e1602159. Bibcode:2017SciA....3E2159B. doi:10.1126/sciadv.1602159. PMC 5310825. PMID 28246643. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310825

  115. Flannery Sutherland, Joseph T.; Moon, Benjamin C.; Stubbs, Thomas L.; Benton, Michael J. (27 February 2019). "Does exceptional preservation distort our view of disparity in the fossil record?". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): 20190091. doi:10.1098/rspb.2019.0091. ISSN 0962-8452. PMC 6408902. PMID 30963850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408902

  116. Flannery Sutherland, Joseph T.; Moon, Benjamin C.; Stubbs, Thomas L.; Benton, Michael J. (27 February 2019). "Does exceptional preservation distort our view of disparity in the fossil record?". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): 20190091. doi:10.1098/rspb.2019.0091. ISSN 0962-8452. PMC 6408902. PMID 30963850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408902

  117. Shcherbakov, Dmitry; Tarmo, Timm; Tzetlin, Alexander B.; Vinn, Olev; Zhuravlev, Andrey (April 2020). "A probable oligochaete from an Early Triassic Lagerstätte of the southern Cis-Urals and its evolutionary implications". Acta Palaeontologica Polonica. 65 (2): 219–233. doi:10.4202/app.00704.2019. S2CID 219097612. Retrieved 28 April 2023. https://www.researchgate.net/publication/340790069

  118. Dahoumane, Anissa; Nedjari, Ahmed; Aït-Ouali, Rachid; Taquet, Philippe; Vacant, Renaud; Steyer, Jean-Sébastien (2016). "A new Mastodonsauroid Temnospondyl from the Triassic of Algeria: Implications for the biostratigraphy and palaeoenvironments of the Zarzaïtine Series, northern Sahara". Comptes Rendus Palevol (in French). 15 (8): 918–926. doi:10.1016/j.crpv.2015.09.005. https://sciencepress.mnhn.fr/fr/periodiques/comptes-rendus-palevol/15/fasc8/new-mastodonsauroid-temnospondyl-triassic-algeria-implications-biostratigraphy-and-palaeoenvironments-zarzaitine-series-northern-sahara

  119. Hu, Shi-xue; Zhang, Qi-yue; Chen, Zhong-Qiang; Zhou, Chang-yong; Lü, Tao; Xie, Tao; Wen, Wen; Huang, Jin-yuan; Benton, Michael J. (7 August 2011). "The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction". Proceedings of the Royal Society B: Biological Sciences. 278 (1716): 2274–2282. doi:10.1098/rspb.2010.2235. ISSN 0962-8452. PMC 3119007. PMID 21183583. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3119007

  120. Liu, Jun; Martin Sander, P. (1 January 2019). "The Vossenveld Formation and biotic recovery from the Permo-Triassic extinction". Staringia. 16 (1): 147–152. ISSN 0165-2354. https://natuurtijdschriften.nl/pub/1021530/

  121. Bicknell, Russell D. C.; Smith, Patrick M. (2 October 2021). "The first fossil scorpion from Australia". Alcheringa: An Australasian Journal of Palaeontology. 45 (4): 419–422. doi:10.1080/03115518.2021.1983874. ISSN 0311-5518. https://www.tandfonline.com/doi/abs/10.1080/03115518.2021.1983874

  122. Shear, W. A.; Selden, Paul A.; Gall, Jean-Claude (June 2009). "Millipedes from the Grès à Voltzia, Triassic of France, with comments on Mesozoic millipedes (Diplopoda: Helminthomorpha: Eugnatha)". International Journal of Myriapodology. 2 (1): 1–13. doi:10.1163/187525409X462395 (inactive 13 April 2025). hdl:1808/8337. Retrieved 18 June 2023.{{cite journal}}: CS1 maint: DOI inactive as of April 2025 (link) https://www.researchgate.net/publication/233580187

  123. Szwedo, Jacek; Nel, André (1 December 2011). "The Oldest Aphid Insect from the Middle Triassic of the Vosges, France". Acta Palaeontologica Polonica. 56 (4): 757–766. doi:10.4202/app.2010.0034. ISSN 0567-7920. https://doi.org/10.4202%2Fapp.2010.0034

  124. Liu, Jun; Martin Sander, P. (1 January 2019). "The Vossenveld Formation and biotic recovery from the Permo-Triassic extinction". Staringia. 16 (1): 147–152. ISSN 0165-2354. https://natuurtijdschriften.nl/pub/1021530/

  125. Liu, Jun; Martin Sander, P. (1 January 2019). "The Vossenveld Formation and biotic recovery from the Permo-Triassic extinction". Staringia. 16 (1): 147–152. ISSN 0165-2354. https://natuurtijdschriften.nl/pub/1021530/

  126. Bicknell, Russell D. C.; Zalohar, Jure; Miklavc, Primoz; Celarc, Bogomir; Kriznar, Matija; Hitij, Tomaz (2021). "Revisiting horseshoe crab fossils from the Middle Triassic (Anisian) Strelovec Formation Konservat-Lagerstätte of Slovenia". Palaeontologia Electronica. doi:10.26879/1168. ISSN 1094-8074. https://rune.une.edu.au/web/handle/1959.11/37457

  127. Feldman, Howard R. (2005). "Paleoecology, Taphonomy, and Biogeography of a Coenothyris Community (Brachiopoda, Terebratulida) from the Triassic (Upper Anisian–Lower Ladinian) of Israel". American Museum Novitates (3479): 1. doi:10.1206/0003-0082(2005)479[0001:PTABOA]2.0.CO;2. ISSN 0003-0082. http://www.bioone.org/perlserv/?request=get-abstract&doi=10.1206%2F0003-0082(2005)479%5B0001%3APTABOA%5D2.0.CO%3B2

  128. Flannery Sutherland, Joseph T.; Moon, Benjamin C.; Stubbs, Thomas L.; Benton, Michael J. (27 February 2019). "Does exceptional preservation distort our view of disparity in the fossil record?". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): 20190091. doi:10.1098/rspb.2019.0091. ISSN 0962-8452. PMC 6408902. PMID 30963850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408902

  129. Liu, Jun; Martin Sander, P. (1 January 2019). "The Vossenveld Formation and biotic recovery from the Permo-Triassic extinction". Staringia. 16 (1): 147–152. ISSN 0165-2354. https://natuurtijdschriften.nl/pub/1021530/

  130. Klug, Christian; Spiekman, Stephan N. F.; Bastiaans, Dylan; Scheffold, Beat; Scheyer, Torsten M. (4 March 2024). "The marine conservation deposits of Monte San Giorgio (Switzerland, Italy): the prototype of Triassic black shale Lagerstätten". Swiss Journal of Palaeontology. 143 (1): 11. doi:10.1186/s13358-024-00308-7. ISSN 1664-2384. PMC 10912274. PMID 38450287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912274

  131. Dominici, Stefano; Danise, Silvia; Tintori, Andrea (15 August 2024). "A Middle Triassic Cassian-type fauna (Pelsa-Vazzoler Lagerstätte) and the adaptive radiation of the Modern evolutionary fauna". Papers in Palaeontology. 10 (4). doi:10.1002/spp2.1579. ISSN 2056-2799. https://doi.org/10.1002%2Fspp2.1579

  132. Flannery Sutherland, Joseph T.; Moon, Benjamin C.; Stubbs, Thomas L.; Benton, Michael J. (27 February 2019). "Does exceptional preservation distort our view of disparity in the fossil record?". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): 20190091. doi:10.1098/rspb.2019.0091. ISSN 0962-8452. PMC 6408902. PMID 30963850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408902

  133. Flannery Sutherland, Joseph T.; Moon, Benjamin C.; Stubbs, Thomas L.; Benton, Michael J. (27 February 2019). "Does exceptional preservation distort our view of disparity in the fossil record?". Proceedings of the Royal Society B: Biological Sciences. 286 (1897): 20190091. doi:10.1098/rspb.2019.0091. ISSN 0962-8452. PMC 6408902. PMID 30963850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408902

  134. Lukeneder, Alexander; Surmik, Dawid; Gorzelak, Przemysław; Niedźwiedzki, Robert; Brachaniec, Tomasz; Salomon, Mariusz A. (25 November 2020). "Bromalites from the Upper Triassic Polzberg section (Austria); insights into trophic interactions and food chains of the Polzberg palaeobiota". Scientific Reports. 10 (1): 20545. doi:10.1038/s41598-020-77017-x. PMC 7689505. PMID 33239675. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7689505

  135. Lukeneder, P.; Lukeneder, A. (2022). "Mineralized belemnoid cephalic cartilage from the late Triassic Polzberg Konservat-Lagerstätte (Austria)". PLOS One. 17 (4): e0264595. Bibcode:2022PLoSO..1764595L. doi:10.1371/journal.pone.0264595. PMC 9020720. PMID 35442996. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9020720

  136. Lukeneder, Alexander; Lukeneder, Petra (17 August 2021). "The Upper Triassic Polzberg palaeobiota from a marine Konservat-Lagerstätte deposited during the Carnian Pluvial Episode in Austria". Scientific Reports. 11 (1): 16644. Bibcode:2021NatSR..1116644L. doi:10.1038/s41598-021-96052-w. PMC 8370992. PMID 34404880. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370992

  137. Frankowiak, K.; Mazur, M.; Gothmann, A. M.; Stolarski, J. (15 July 2013). "Diagenetic Alteration of Triassic Coral from the Aragonite Konservat-Lagerstatte in Alakir Cay, Turkey: Implications for Geochemical Measurements". PALAIOS. 28 (6): 333–342. doi:10.2110/palo.2012.p12-116r. ISSN 0883-1351. https://pubs.geoscienceworld.org/palaios/article/28/6/333-342/146328

  138. Ren, Ting-Cong; Ma, Xin-Ying; Wang, Qing-Dong; Xu, Guang-Hui (21 November 2024). "An exceptionally preserved fossil assemblage from the early Jurassic of Chongqing (China) reveals a complex lacustrine ecosystem". Scientific Reports. 14 (1): 26147. doi:10.1038/s41598-024-77084-4. ISSN 2045-2322. PMC 11582640. PMID 39572595. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582640

  139. Duffin, Christopher J.; Garassino, Alessandro; Pasini, Giovanni (19 May 2023). "Squaloraja Riley 1833 (Holocephala: Squalorajidae) from the Lower Jurassic of Osteno Konservat-Lagerstätte (Como, NW Italy)". Natural History Sciences. 10 (1). doi:10.4081/nhs.2023.642. ISSN 2385-0922. S2CID 258822179. https://doi.org/10.4081%2Fnhs.2023.642

  140. CONYBEARE, W. D. (1824). "XXI.—On the Discovery of an almost perfect Skeleton of the Plesiosaurus". Transactions of the Geological Society of London. 1 (2): 381–389. doi:10.1144/transgslb.1.2.381. ISSN 2042-5295. https://dx.doi.org/10.1144/transgslb.1.2.381

  141. Lomax, Dean R.; Massare, Judy A. (4 March 2015). "A new species of Ichthyosaurus from the Lower Jurassic of West Dorset, England, U.K." Journal of Vertebrate Paleontology. 35 (2): e903260. Bibcode:2015JVPal..35E3260L. doi:10.1080/02724634.2014.903260. ISSN 0272-4634. S2CID 85745787. http://osf.io/89nhw

  142. Norman, David B (29 November 2019). "Scelidosaurus harrisonii from the Early Jurassic of Dorset, England: cranial anatomy". Zoological Journal of the Linnean Society. 188 (1): 1–81. doi:10.1093/zoolinnean/zlz074. ISSN 0024-4082. https://dx.doi.org/10.1093/zoolinnean/zlz074

  143. Zeuner, F. E. (1962). "Fossil insects from the Lower Lias of Charmouth, Dorset". Bulletin of the British Museum (Natural History), Geology. 7 (1): 155–171. https://www.biodiversitylibrary.org/part/83511

  144. BASSI, DAVIDE; FUGAGNOLI, ANNA; POSENATO, RENATO; SCOTT, DAVID B. (2008). "Testate Amoebae from the Early Jurassic of the Western Tethys, North-East Italy". Palaeontology. 51 (6): 1335–1339. Bibcode:2008Palgy..51.1335B. doi:10.1111/j.1475-4983.2008.00817.x. ISSN 0031-0239. S2CID 129670565. https://doi.org/10.1111%2Fj.1475-4983.2008.00817.x

  145. Neri, M.; Roghi, G.; Ragazzi, E.; Papazzoni, C. A. (2017). "First record of Pliensbachian (Lower Jurassic) amber and associated palynoflora from the Monti Lessini (northern Italy)". Geobios. 50 (1): 49–63. Bibcode:2017Geobi..50...49N. doi:10.1016/j.geobios.2016.10.001. Retrieved 3 January 2022. https://www.sciencedirect.com/science/article/pii/S0016699516301231

  146. MERINO-TOMÉ, ÓSCAR; PORTA, GIOVANNA DELLA; KENTER, JEROEN A. M.; VERWER, KLAAS; HARRIS, PAUL (MITCH); ADAMS, ERWIN W.; PLAYTON, TED; CORROCHANO, DIEGO (2011). "Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustacy and carbonate production". Sedimentology. 59 (1): 118–155. doi:10.1111/j.1365-3091.2011.01232.x. ISSN 0037-0746. https://dx.doi.org/10.1111/j.1365-3091.2011.01232.x

  147. Scheibner, Christian; Reijmer, J. G. (1999). "Facies patterns within a Lower Jurassic upper slope to inner platform transect (Jbel Bou Dahar, Morocco)". Facies. 41 (1): 55–80. Bibcode:1999Faci...41...55S. doi:10.1007/bf02537460. ISSN 0172-9179. https://dx.doi.org/10.1007/bf02537460

  148. Beauvais, L. (1986). "Monographie des Madreporaires du Jurassique Inferieur du Maroc (Monograph on Lower Jurassic Corals of Morocco)". Palaeontographica Abteilung A. 194 (3): 1–68. https://www.schweizerbart.de/papers/pala/detail/A194/71204/Monographie_des_Madreporaires_du_Jurassique_inferieur_du_Maroc

  149. Bomfleur, B.; McLoughlinVajda, V. (2014). Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science, 343(6177), 1376-1377, S.; Vajda, V. (2014). "Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns". Science. 343 (6177): 1376–1377. Bibcode:2014Sci...343.1376B. doi:10.1126/science.1249884. PMID 24653037. S2CID 38248823. Retrieved 30 July 2021.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) https://www.science.org/doi/full/10.1126/science.1249884

  150. McLoughlin, S.; Bomfleur, B. (2016). "Biotic interactions in an exceptionally well preserved osmundaceous fern rhizome from the Early Jurassic of Sweden". Palaeogeography, Palaeoclimatology, Palaeoecology. 464 (1): 86–96. Bibcode:2016PPP...464...86M. doi:10.1016/j.palaeo.2016.01.044. https://doi.org/10.1016%2Fj.palaeo.2016.01.044

  151. Qu, Y.; McLoughlin, M.; van Zuilen, M. A.; Whitehouse, M.; Engdahl, A.; Vajda, V. (2019). "Evidence for molecular structural variations in the cytoarchitectures of a Jurassic plant". Geology. 47 (4): 325–329. Bibcode:2019Geo....47..325Q. doi:10.1130/g45725.1. S2CID 84841297. https://doi.org/10.1130%2Fg45725.1

  152. Marroquín, Selva M.; Martindale, Rowan C.; Fuchs, Dirk (7 February 2018). "New records of the late Pliensbachian to early Toarcian (Early Jurassic) gladius-bearing coleoid cephalopods from the Ya Ha Tinda Lagerstätte, Canada". Papers in Palaeontology. 4 (2): 245–276. doi:10.1002/spp2.1104. S2CID 135120464. Retrieved 8 April 2023. https://onlinelibrary.wiley.com/doi/full/10.1002/spp2.1104

  153. Martindale, Rowan C.; Aberhan, Martin (15 July 2017). "Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada)". Palaeogeography, Palaeoclimatology, Palaeoecology. 478: 103–120. Bibcode:2017PPP...478..103M. doi:10.1016/j.palaeo.2017.01.009. Retrieved 29 April 2023. https://www.sciencedirect.com/science/article/abs/pii/S0031018217300160

  154. Martindale, Rowan C.; Them, Theodore R.; Gill, Benjamin C.; Marroquín, Selva M.; Knoll, Andrew H. (1 July 2017). "A new Early Jurassic (ca. 183 Ma) fossil Lagerstätte from Ya Ha Tinda, Alberta, Canada". Geology. 45 (3): 255–258. Bibcode:2017Geo....45..255M. doi:10.1130/G38808.1. hdl:10919/81874. S2CID 56182151. https://doi.org/10.1130%2FG38808.1

  155. Muscente, A. D.; Martindale, Rowan C.; Schiffbauer, James D.; Creighton, Abby L.; Bogan, Brooke A. (4 November 2019). "Taphonomy of the Lower Jurassic Konservat-Lagerstätte at Ya Ha Tina (Alberta, Canada) and Its Significance for Exceptional Fossil Preservation During Oceanic Anoxic Events". PALAIOS. 34 (11): 515–541. Bibcode:2019Palai..34..515M. doi:10.2110/palo.2019.050. S2CID 208268686. Retrieved 29 April 2023. https://pubs.geoscienceworld.org/sepm/palaios/article-abstract/34/11/515/574686/TAPHONOMY-OF-THE-LOWER-JURASSIC-KONSERVAT

  156. Williams, Matt; Benton, Michael James; Ross, Andrew (15 July 2015). "The Strawberry Bank Lagerstätte reveals insights into Early Jurassic life". Journal of the Geological Society. 172 (6): 683–692. Bibcode:2015JGSoc.172..683W. doi:10.1144/jgs2014-144. hdl:1983/a7fc8bb4-889c-4fe9-b049-86d284141316. S2CID 52971056. Retrieved 18 June 2023. https://pubs.geoscienceworld.org/jgs/article-abstract/172/6/683/144810/The-Strawberry-Bank-Lagerstatte-reveals-insights?redirectedFrom=fulltext

  157. Little, Crispin T. S.; Gale, Andy; Williams, Matt; Hammer, Øyvind; Fernandez, Vincent (24 January 2023). "Bivalve-barnacle pseudoplanktonic colonisation of wood from the Toarcian, Lower Jurassic, Strawberry Bank Lagerstätte, Somerset, UK". Acta Palaeontologica Polonica. 68 (1): 133–142. doi:10.4202/app.01018.2022. S2CID 256258263. Retrieved 18 June 2023. https://www.app.pan.pl/article/item/app010182022.html

  158. Srdic, Alexander; Beardmore, Susan; Lomax, Dean R. (10 September 2019). "A rediscovered Lower Jurassic ichthyosaur skeleton possibly from the Strawberry Bank Lagerstätte, Somerset, UK". Historical Biology. 33 (6): 814–822. doi:10.1080/08912963.2019.1663840. S2CID 203358919. Retrieved 18 June 2023. https://www.tandfonline.com/doi/abs/10.1080/08912963.2019.1663840

  159. Jamison-Todd, Sarah; Moon, Benjamin C.; Rowe, Andre J.; Williams, Matt; Benton, Michael James (29 September 2022). "Dietary niche partitioning in Early Jurassic ichthyosaurs from Strawberry Bank". Journal of Anatomy. 241 (6): 1409–1423. doi:10.1111/joa.13744. PMC 9644957. PMID 36175086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644957

  160. Konwert, M.; Hörnig, M. (2018). "Grimmenichthys ansorgei, gen. et sp. nov. (Teleostei, "Pholidophoriformes"), and other "pholidophoriform" fishes from the early Toarcian of Grimmen (Mecklenburg-Western Pomerania, Germany)". Journal of Vertebrate Paleontology. 38 (3): 1–16. doi:10.1080/02724634.2018.1451872. hdl:11336/84457. S2CID 90344418. Retrieved 24 October 2021. https://www.tandfonline.com/doi/abs/10.1080/02724634.2018.1451871

  161. Stumpf, Sebastian (2017). "A synoptic review of the vertebrate fauna from the "Green Series"(Toarcian) of northeastern Germany with descriptions of new taxa: A contribution to the knowledge of Early Jurassic vertebrate palaeobiodiversity patterns" (PDF). Greifswald University (PhD Thesis): 1–47. Retrieved 9 September 2021. https://epub.ub.uni-greifswald.de/frontdoor/deliver/index/docId/1941/file/STUMPF2017DISS.pdf

  162. Ansorge, J. (2003). "Insects from the Lower Toarcian of Middle Europe and England". Proceedings of the Second Palaeoentomological Congress, Acta Zoologica Cracoviensia. 46 (1): 291–310. Retrieved 30 July 2021. https://www.researchgate.net/publication/271444424

  163. Ruebsam, W.; Schmid-Röhl, A.; Al-Husseini, M. (2023). "Astronomical timescale for the early Toarcian (Early Jurassic) Posidonia Shale and global environmental changes". Palaeogeography, Palaeoclimatology, Palaeoecology. 623: 111619. Bibcode:2023PPP...62311619R. doi:10.1016/j.palaeo.2023.111619. S2CID 258545235. Retrieved 10 July 2023. https://www.sciencedirect.com/science/article/pii/S0031018223002377

  164. Röhl, Hans-Joachim; Schmid-Röhl, Annette; Oschmann, Wolfgang; Frimmel, Andreas; Schwark, Lorenz (1 January 2011). "The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate". Palaeogeography, Palaeoclimatology, Palaeoecology. 165 (1–2): 27–52. doi:10.1016/S0031-0182(00)00152-8. Retrieved 1 July 2023. https://www.sciencedirect.com/science/article/abs/pii/S0031018200001528

  165. Carvalho, Carlos Neto de; Pereira, Bruno Claro; Klompmaker, Adiel; Baucon, Andrea; Moita, José António; Pereira, Pedro; Machado, Susana; Belo, João; Carvalho, Jorge M. F.; Mergulhão, Lia (3 May 2016). "Running crabs, walking crinoids, grazing gastropods: behavioral diversity and evolutionary implications in the Cabeço da Ladeira lagerstätte (Middle Jurassic, Portugal)". Comunicações Geológicas: 39–54. ISSN 0873-948X. Retrieved 8 June 2024. https://repositorioaberto.uab.pt/handle/10400.2/5285

  166. Bravi, Sergio; Garassino, Alessandro; Bartiromo, Antonello; Audo, Denis; Charbonnier, Sylvain; Schweigert, Günter; Thévenard, Frédéric; Longobardi, Cristiano (1 April 2014). "Middle Jurassic Monte Fallano Plattenkalk (Campania, southern Italy): first report on terrestrial plants, decapod crustaceans and fishes". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 272: 79–107. doi:10.1127/0077-7749/2014/0398. https://www.schweizerbart.de/papers/njgpa/detail/272/82315/Middle_Jurassic_Monte_Fallano_Plattenkalk_Campania?af=crossref

  167. Hart, Malcolm B.; De Jonghe, Alex; Page, Kevin N.; Price, Gregory D.; Smart, Christopher W. (1 May 2016). "EXCEPTIONAL ACCUMULATIONS OF STATOLITHS IN ASSOCIATION WITH THE CHRISTIAN MALFORD LAGERSTÄTTE (CALLOVIAN, JURASSIC) IN WILTSHIRE, UNITED KINGDOM". PALAIOS. 31 (5): 203–220. doi:10.2110/palo.2015.066. ISSN 0883-1351. Retrieved 12 May 2024 – via GeoScienceWorld. https://pubs.geoscienceworld.org/palaios/article/31/5/203-220/325537

  168. Wings, Oliver; Rabi, Márton; Schneider, Jörg W.; Schwermann, Leonie; Sun, Ge; Zhou, Chang-Fu; Joyce, Walter G. (2012), "An enormous Jurassic turtle bone bed from the Turpan Basin of Xinjiang, China", Naturwissenschaften, 114 (11): 925–35, Bibcode:2012NW.....99..925W, doi:10.1007/s00114-012-0974-5, PMID 23086389, S2CID 17423081 /wiki/Naturwissenschaften

  169. Ponomarenko, A. G.; Aristov, D. S.; Bashkuev, A. S.; Gubin, Yu. M.; Khramov, A. V.; Lukashevich, E. D.; Popov, Yu. A.; Pritykina, L. N.; Sinitsa, S. M.; Sinitshenkova, N. D.; Sukatsheva, I. D.; Vassilenko, D. V.; Yan, E. V. (1 December 2014). "Upper Jurassic Lagerstätte Shar Teg, southwestern Mongolia". Paleontological Journal. 48 (14): 1573–1682. doi:10.1134/S0031030114140160. ISSN 1555-6174. https://doi.org/10.1134/S0031030114140160

  170. Zell, Patrick; Beckmann, Seija; Stinnesbeck, Wolfgang (December 2014). "Age and depositional conditions of the marine vertebrate concentration Lagerstätte at Gomez Farías, southern Coahuila, Mexico". Journal of South American Earth Sciences. 56: 91–109. doi:10.1016/j.jsames.2014.08.009. Retrieved 8 June 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S0895981114001114

  171. Frese, Michael; Gloy, Gerda; Oberprieler, Rolf G.; Gore, Damian B. (5 June 2017). "Imaging of Jurassic fossils from the Talbragar Fish Bed using fluorescence, photoluminescence, and elemental and mineralogical mapping". PLOS ONE. 12 (6): e0179029. Bibcode:2017PLoSO..1279029F. doi:10.1371/journal.pone.0179029. ISSN 1932-6203. PMC 5459505. PMID 28582427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459505

  172. Kin, Adrian; Gruszczyński, Michał; Martill, David; Marshall, Jim D.; Błażejowski, Błażej (2013). "Palaeoenvironment and taphonomy of a Late Jurassic (Late Tithonian) Lagerstätte from central Poland". Lethaia. 46 (1): 71–81. doi:10.1111/j.1502-3931.2012.00322.x. ISSN 0024-1164. https://www.idunn.no/doi/10.1111/j.1502-3931.2012.00322.x

  173. Błażejowski, Błażej; Weryński, Łukasz; Wierzbowski, Andrzej; Michalska, Monika; Hryniewicz, Krzysztof; Uchman, Alfred; Kugler, Stanisław; Bącal, Paweł; Hołda-Michalska, Aleksandra (2023). "Summary of a decade of research at the Owadów–Brzezinki Lagerstätte (Tithonian, central Poland): A review and perspectives for the future". Volumina Jurassica. 21: 83–98. ISSN 1731-3708. https://vjs.pgi.gov.pl/article/view/34082

  174. Weryński, Łukasz; Błażejowski, Błażej; Kędzierski, Mariusz (2023). "A COMPARISON OF LATE JURASSIC PREDATORY ACTINOPTERYGII TEETH FROM OWADÓW-BRZEZINKI LÄGERSTATTE AND ITS PALAEOECOLOGICAL IMPLICATIONS". Acta Palaeontologica Polonica. 68. doi:10.4202/app.01058.2023. Retrieved 11 April 2025. https://www.app.pan.pl/article/item/app010582023.html

  175. Cardoso, Alexandre Ribeiro; Romero, Guilherme Raffaeli; Osés, Gabriel Ladeira; Nogueira, Afonso César Rodrigues (15 March 2020). "Taphonomy of lacustrine fish fossils of the Parnaíba Basin, northeastern Brazil: Spatial and causative relations of Konservat Lagerstätten in West Gondwana during Jurassic-Cretaceous". Palaeogeography, Palaeoclimatology, Palaeoecology. 542: 109602. doi:10.1016/j.palaeo.2020.109602. ISSN 0031-0182. https://www.sciencedirect.com/science/article/abs/pii/S0031018219309009

  176. Rozada, Lee; Allain, Ronan; Vullo, Romain; Goedert, Jean; Augier, Dominique; Jean, Amandine; Marchal, Jonathan; Peyre de Fabrègues, Claire; Qvarnström, Martin; Royo-Torres, Rafael (23 January 2021). "A Lower Cretaceous Lagerstätte from France: a taphonomic overview of the Angeac-Charente vertebrate assemblage". Lethaia. 54 (2): 141–165. doi:10.1111/let.12394. S2CID 234299378. Retrieved 29 June 2023. https://onlinelibrary.wiley.com/doi/abs/10.1111/let.12394

  177. Gil-Delgado, Alejandro; Delclòs, Xavier; Sellés, Albert; Galobart, Àngel; Oms, Oriol (17 April 2023). "The Early Cretaceous coastal lake Konservat-Lagerstätte of La Pedrera de Meià (Southern Pyrenees)". Geologica Acta. 21: 1–XIII. doi:10.1344/GeologicaActa2023.21.3. hdl:2445/201820. ISSN 1696-5728. https://revistes.ub.edu/index.php/GEOACTA/article/view/41125

  178. Sánchez-García, Alba; Peñalver, Enrique; Delclòs, Xavier; Engel, Michael S. (2019). Smith, Andrew (ed.). "Jumping bristletails (Insecta, Archaeognatha) from the Lower Cretaceous amber of Lebanon". Papers in Palaeontology. 5 (4): 679–697. doi:10.1002/spp2.1261. hdl:2445/163385. ISSN 2056-2799. https://onlinelibrary.wiley.com/doi/10.1002/spp2.1261

  179. Sibelle, Maksoud; Dany, Azar (2023). "Lebanese Amber: A Fantastic Journey into the Time of Dinosaurs" (PDF). Journal of Gems & Gemmology. 25 (4): 136–145. doi:10.15964/j.cnki.027jgg.2023.04.012. ISSN 2096-9120. http://jogg.cug.edu.cn/en/article/doi/10.15964/j.cnki.027jgg.2023.04.012.pdf

  180. El Hajj, Layla; Baudin, François; Gèze, Raymond; Cavin, Lionel; Dejax, Jean; Garcia, Géraldine; Horne, David J.; Maksoud, Sibelle; Otero, Olga; Azar, Dany (1 April 2021). "Dysodiles from the lower Barremian of Lebanon: Insights on the fossil assemblages and the depositional environment reconstruction". Cretaceous Research. 120: 104732. doi:10.1016/j.cretres.2020.104732. ISSN 0195-6671. https://www.sciencedirect.com/science/article/abs/pii/S0195667120304195

  181. Schädel, Mario; Azar, Dany; El Hajj, Layla; Maksoud, Sibelle; Robin, Ninon (2 April 2025). "A 125 million-year-old freshwater isopod shines new light on the origin of subterranean freshwater species". Royal Society Open Science. 12 (4): 241512. doi:10.1098/rsos.241512. PMC 11962533. PMID 40177107. https://royalsocietypublishing.org/doi/full/10.1098/rsos.241512

  182. Kopylov, D. S.; Rasnitsyn, A. P.; Aristov, D. S.; Bashkuev, A. S.; Bazhenova, N. V.; Dmitriev, V. Yu.; Gorochov, A. V.; Ignatov, M. S.; Ivanov, V. D.; Khramov, A. V.; Legalov, A. A.; Lukashevich, E. D.; Mamontov, Yu. S.; Melnitsky, S. I.; Ogłaza, B. (1 December 2020). "The Khasurty Fossil Insect Lagerstätte". Paleontological Journal. 54 (11): 1221–1394. doi:10.1134/S0031030120110027. ISSN 1555-6174. https://doi.org/10.1134/S0031030120110027

  183. Poropat, Stephen F.; Martin, Sarah K.; Tosolini, Anne-Marie P.; Wagstaff, Barbara E.; Bean, Lynne B.; Kear, Benjamin P.; Vickers-Rich, Patricia; Rich, Thomas H. (3 April 2018). "Early Cretaceous polar biotas of Victoria, southeastern Australia—an overview of research to date". Alcheringa: An Australasian Journal of Palaeontology. 42 (2): 157–229. Bibcode:2018Alch...42..157P. doi:10.1080/03115518.2018.1453085. ISSN 0311-5518. S2CID 133845914. https://www.tandfonline.com/doi/full/10.1080/03115518.2018.1453085

  184. Filho, Edilson Bezerra dos Santos; Adami-Rodrigues, Karen; Lima, Flaviana Jorge de; Bantim, Renan Alfredo Machado; Wappler, Torsten; Saraiva, Antônio Álamo Feitosa (9 August 2019). "Evidence of plant–insect interaction in the Early Cretaceous Flora from the Crato Formation, Araripe Basin, Northeast Brazil". Historical Biology. 31 (7): 926–937. doi:10.1080/08912963.2017.1408611. ISSN 0891-2963. Retrieved 21 May 2024 – via Taylor and Francis Online. https://www.tandfonline.com/doi/full/10.1080/08912963.2017.1408611

  185. Voltani, Cibele Gasparelo; Osés, Gabriel Ladeira; Freitas, Bernardo Tavares; Prado, Gustavo Marcondes Evangelista Martins; Rohn, Rosemarie; Pacheco, Mírian Liza Alves Forancelli; Anelli, Luiz Eduardo; de Almeida, Renato Paes; Simões, Marcello Guimarães; Caldeira do Prado, Ludmila Alves; Araripe, Rilda Verônica Cardoso de; Galante, Douglas; Rangel, Elidiane Cipriano (2023). "Taphonomy of fish, invertebrates and plant remains in the first Tethyan-South Atlantic marine ingression along Cretaceous rift systems in NE-Brazil". Cretaceous Research. 147: 105508. doi:10.1016/j.cretres.2023.105508. ISSN 0195-6671. https://dx.doi.org/10.1016/j.cretres.2023.105508

  186. "Vertebrates from the uppermost stratigraphic sequence of the Pietraroja plattenkalk (Early Cretaceous, Southern Italy)". iris.unito.it. Retrieved 12 July 2024. https://iris.unito.it/handle/2318/151109

  187. Bartiromo, Antonello (1 November 2013). "Plant remains from the Lower Cretaceous Fossil-Lagerstätte of Pietraroja, Benevento, southern Italy". Cretaceous Research. 46: 65–79. doi:10.1016/j.cretres.2013.08.013. ISSN 0195-6671. https://www.sciencedirect.com/science/article/pii/S0195667113001316

  188. Lee, Soo Bin; Li, Yan-Da; Cai, Chenyang; Engel, Michael S.; Nam, Gi Soo; Park, Jong Kyun; Nel, André; Jenkins Shaw, Josh; Jouault, Corentin; Legalov, Andrei; Kundrata, Robin (June 2024). "Cretaceous beetles of the Jinju Formation (Coleoptera): An overview of the Jinju Formation, its coleopteran diversity, and past and future research". Journal of Asia-Pacific Entomology. 27 (2): 102236. doi:10.1016/j.aspen.2024.102236. Retrieved 8 June 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S1226861524000414

  189. Kim, Haang-Mook; Chang, Mee-Mann; Wu, Feixiang; Kim, Yang-Hee (1 January 2014). "A new ichthyodectiform (Pisces, Teleostei) from the Lower Cretaceous of South Korea and its paleobiogeographic implication". Cretaceous Research. 47: 117–130. doi:10.1016/j.cretres.2013.11.007. ISSN 0195-6671. https://www.sciencedirect.com/science/article/pii/S0195667113001778

  190. Park, Tae-Yoon; Wilson, George D. F.; Lee, Dong-Chan; Choi, Duck K. (2012). "Occurrence of the isopod Archaeoniscus coreaensis new species from the Lower Cretaceous Jinju Formation, Korea". Journal of Paleontology. 86 (4): 626–640. doi:10.1666/11-131R.1. ISSN 0022-3360. https://www.cambridge.org/core/journals/journal-of-paleontology/article/abs/occurrence-of-the-isopod-archaeoniscus-coreaensis-new-species-from-the-lower-cretaceous-jinju-formation-korea/50CB97E8DA651B48F396B3F88FB8A79A

  191. Kim, Kyung Soo; Lockley, Martin G.; Lim, Jong Deock; Kim, Dong Hee (April 2019). "The oldest known anuran (frog) trackways from the Jinju Formation, Lower Cretaceous, Korea". Cretaceous Research. 96: 142–148. doi:10.1016/j.cretres.2018.12.008. Retrieved 8 June 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S0195667118304166

  192. Than-Marchese, Bruno Andrés; Alvarado-Ortega, Jesús (October 2022). "Armigatus felixi sp. nov. An Albian double armored herring (Clupeomorpha, Ellimmichthyiformes) from the Tlayúa lagerstätte, Mexico". Journal of South American Earth Sciences. 118: 103905. Bibcode:2022JSAES.11803905T. doi:10.1016/j.jsames.2022.103905. Retrieved 29 June 2023. https://www.sciencedirect.com/science/article/abs/pii/S0895981122001948

  193. López-Palomino, Isabel; González-Rodríguez, Katia Adriana; Schultze, Hans-Peter; Palma-Ramírez, Arturo; Contreras-Cruz, Diana (1 November 2021). "Ammonites from the La Negra Facies (El Doctor Formation, late Albian) of the Muhi Quarry, Hidalgo, central Mexico". Journal of South American Earth Sciences. 111: 103400. doi:10.1016/j.jsames.2021.103400. ISSN 0895-9811. https://www.sciencedirect.com/science/article/pii/S0895981121002479

  194. Néraudeau, Didier; Vullo, Romain; Bénéfice, Pierre; Breton, Gérard; Dépré, Éric; Gaspard, Danièle; Girard, Vincent; Le Couls, Matthieu; Moreau, Jean-David; Nel, André; Perrichot, Vincent; Solórzano-Kraemer, Mónica M.; Wappler, Torsten (July 2020). "The paralic Albian–Cenomanian Puy-Puy Lagerstätte (Aquitaine Basin, France): An overview and new data". Cretaceous Research. 111: 104124. Bibcode:2020CrRes.11104124N. doi:10.1016/j.cretres.2019.03.022. S2CID 133649140. Retrieved 18 June 2023. https://www.sciencedirect.com/science/article/abs/pii/S0195667118304038

  195. Vullo, Romain; Néraudeau, Didier; Dépré, Eric (October 2013). "Vertebrate remains from the Cenomanian (Late Cretaceous) plant-bearing Lagerstätte of Puy-Puy (Charente-Maritime, France)". Cretaceous Research. 45: 314–320. Bibcode:2013CrRes..45..314V. doi:10.1016/j.cretres.2013.06.002. Retrieved 18 June 2023. https://www.sciencedirect.com/science/article/abs/pii/S0195667113001043

  196. Santos, Artai A.; Xiao, Lifang; Labandeira, Conrad C.; Néraudeau, Didier; Dépré, Eric; Moreau, Jean-David; Perrichot, Vincent; Wappler, Torsten (1 July 2022). "Plant–insect interactions from the mid-Cretaceous at Puy-Puy (Aquitaine Basin, western France) indicates preferential herbivory for angiosperms amid a forest of ferns, gymnosperms, and angiosperms". Botany Letters. 169 (4): 568–587. doi:10.1080/23818107.2022.2092772. S2CID 250241945. Retrieved 18 June 2023. https://www.tandfonline.com/doi/abs/10.1080/23818107.2022.2092772

  197. Santos, Artai A.; McLoughlin, Stephen; Rubalcava-Knoth, Marco A.; Hernández-Damián, Ana L.; Villanueva-Amadoz, Uxue; Cevallos-Ferriz, Sergio R. S. (10 July 2024). "Plant-insect interactions in the mid-Cretaceous paleotropical El Chango Lagerstätte (Cintalapa Fm., Mexico)—patterns of herbivory during the Angiosperm Terrestrial Revolution". Frontiers in Ecology and Evolution. 12. doi:10.3389/fevo.2024.1381539. ISSN 2296-701X. https://doi.org/10.3389%2Ffevo.2024.1381539

  198. Friedman, Matt; Beckett, Hermione T.; Close, Roger A.; Johanson, Zerina (2016). "The English Chalk and London Clay: two remarkable British bony fish Lagerstätten". Geological Society, London, Special Publications. 430 (1): 165–200. doi:10.1144/SP430.18. ISSN 0305-8719. https://www.lyellcollection.org/doi/10.1144/SP430.18

  199. George, Hady; Bazzi, Mohamad; Hossny, Tamara El; Ashraf, Nida; Saad, Pierre Abi; Clements, Thomas (29 April 2024). "The famous fish beds of Lebanon: the Upper Cretaceous Lagerstätten of Haqel, Hjoula, Nammoura, and Sahel Aalma". Journal of the Geological Society. 181 (5). doi:10.1144/jgs2023-210. ISSN 0016-7649. https://doi.org/10.1144%2Fjgs2023-210

  200. Rieppel, Olivier; Zaher, Hussam; Tchernov, Eitan; Polcyn, Michael J. (2003). "The anatomy and relationships of Haasiophis terrasanctus, a fossil snake by well-developed hind limbs from the Mid-Cretaceous of the Middle East". Journal of Paleontology. 77 (3): 536–558. doi:10.1666/0022-3360(2003)077<0536:TAAROH>2.0.CO;2. ISSN 0022-3360. https://www.cambridge.org/core/journals/journal-of-paleontology/article/abs/anatomy-and-relationships-of-haasiophis-terrasanctus-a-fossil-snake-by-welldeveloped-hind-limbs-from-the-midcretaceous-of-the-middle-east/7241E4CCA42E98D8C3747A74146F1C1B

  201. Palci, Alessandro; Jurkovšek, Bogdan; Kolar-Jurkovšek, Tea; Caldwell, Michael W. (2008). "New palaeoenvironmental model for the Komen (Slovenia) Cenomanian (Upper Cretaceous) fossil lagerstätte". Cretaceous Research. 29 (2): 316–328. doi:10.1016/j.cretres.2007.05.003. ISSN 0195-6671. https://doi.org/10.1016/j.cretres.2007.05.003

  202. Cawley, John; Lehmann, Jens; Wiese, Frank; Kriwet, Jürgen (2020). "Njoerdichthys dyckerhoffi gen. et sp. nov. (Pycnodontiformes, lower Turonian) northward migration caused by the Cretaceous Thermal Maximum". Cretaceous Research. 116: 104590. doi:10.1016/j.cretres.2020.104590. ISSN 0195-6671. PMC 7611863. PMID 34690488. https://doi.org/10.1016/j.cretres.2020.104590

  203. Klug, Christian; Riegraf, Wolfgang; Lehmann, Jens (2012). "Soft–part preservation in heteromorph ammonites from the Cenomanian–Turonian Boundary Event (OAE 2) in north–west Germany". Palaeontology. 55 (6): 1307–1331. doi:10.1111/j.1475-4983.2012.01196.x. ISSN 0031-0239. https://onlinelibrary.wiley.com/doi/10.1111/j.1475-4983.2012.01196.x

  204. Salamon, Mariusz A.; Gorzelak, Przemyslaw; Borszcz, Tomasz; Gajerski, Artur; Kaźmierczak, Jolanta (May–June 2009). "A crinoid concentration Lagerstätte in the Turonian (Late Cretaceous) Conulus Bed (Miechów-Wolbrom area, Poland)". Geobios. 42 (3): 351–357. doi:10.1016/j.geobios.2008.10.008. Retrieved 9 March 2025 – via Elsevier Science Direct. https://www.sciencedirect.com/science/article/pii/S0016699509000229

  205. Cooper, Samuel L. A.; Martill, David M. (1 December 2020). "Pycnodont fishes (Actinopterygii, Pycnodontiformes) from the Upper Cretaceous (lower Turonian) Akrabou Formation of Asfla, Morocco". Cretaceous Research. 116: 104607. doi:10.1016/j.cretres.2020.104607. ISSN 0195-6671. PMC 7442934. PMID 32863512. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7442934

  206. Martill, David M.; Ibrahim, Nizar; Brito, Paulo M.; Baider, Lahssen; Zhouri, Samir; Loveridge, Robert; Naish, Darren; Hing, Richard (2011). "A new Plattenkalk Konservat Lagerstätte in the Upper Cretaceous of Gara Sbaa, south-eastern Morocco". Cretaceous Research. 32 (4): 433–446. doi:10.1016/j.cretres.2011.01.005. ISSN 0195-6671. https://doi.org/10.1016/j.cretres.2011.01.005

  207. Brothers, D. J.; Rasnitsyn, A. P. (1 September 2003). "Diversity of Hymenoptera and other insects in the Late Cretaceous (Turonian) deposits at Orapa, Botswana : a preliminary review". African Entomology. 11 (2): 221–226. ISSN 1021-3589. Retrieved 8 June 2024 – via Sabinet. https://journals.co.za/content/ento/11/2/EJC32559

  208. Woolley, Christopher (6 June 2016). "The first scarabaeid beetle (Coleoptera, Scarabaeidae, Melolonthinae) described from the Mesozoic (Late-Cretaceous) of Africa". African Invertebrates. 57 (1): 53–66. doi:10.3897/AfrInvertebr.57.8416. ISSN 2305-2562. Retrieved 8 June 2024. http://africaninvertebrates.pensoft.net/articles.php?id=8416

  209. Mnguni, Sandiso; McKay, Ian James; Badenhorst, Shaw (29 April 2024). "A Fossil Paederinae from a Lacustrine Deposit at Orapa Diamond Mine in Botswana1". Journal of Entomological Science. 59 (4). doi:10.18474/JES23-99. ISSN 0749-8004. Retrieved 8 June 2024. https://meridian.allenpress.com/jes/article/doi/10.18474/JES23-99/500466/A-Fossil-Paederinae-from-a-Lacustrine-Deposit-at

  210. Grimaldi, David; Agosti, Donat (5 December 2000). "A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants". Proceedings of the National Academy of Sciences. 97 (25): 13678–13683. doi:10.1073/pnas.240452097. ISSN 0027-8424. PMC 17635. PMID 11078527. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC17635

  211. Trzęsiok, Dawid; Krzykawski, Tomasz; Niedźwiedzki, Robert; Brom, Krzysztof; Gorzelak, Przemysław; Salamon, Mariusz A. (1 May 2014). "Palaeoenvironment of the Upper Cretaceous (Coniacian) concretion-bearing Lagerstätten from Poland". Palaeogeography, Palaeoclimatology, Palaeoecology. 401: 154–165. doi:10.1016/j.palaeo.2014.02.030. ISSN 0031-0182. https://www.sciencedirect.com/science/article/pii/S0031018214001047

  212. George, Hady; Bazzi, Mohamad; Hossny, Tamara El; Ashraf, Nida; Saad, Pierre Abi; Clements, Thomas (29 April 2024). "The famous fish beds of Lebanon: the Upper Cretaceous Lagerstätten of Haqel, Hjoula, Nammoura, and Sahel Aalma". Journal of the Geological Society. 181 (5). doi:10.1144/jgs2023-210. ISSN 0016-7649. https://doi.org/10.1144%2Fjgs2023-210

  213. Dalla Vecchia, F.M; Tentor, M. (2004). "Il Carso 85 milioni di anni fa: Gli straordinari fossili di Polazzo" (PDF). Gruppo Speleologico Monfalconese A.d.F: 1–75. https://www.academia.edu/download/51467252/Il_Carso_85_milioni_di_anni_fa_gli_strao20170122-22471-vnp25m.pdf

  214. Chiarenza, Alfio Alessandro; Fabbri, Matteo; Consorti, Lorenzo; Muscioni, Marco; Evans, David C.; Cantalapiedra, Juan L.; Fanti, Federico (2 December 2021). "An Italian dinosaur Lagerstätte reveals the tempo and mode of hadrosauriform body size evolution". Scientific Reports. 11 (1): 23295. Bibcode:2021NatSR..1123295C. doi:10.1038/s41598-021-02490-x. ISSN 2045-2322. PMC 8640049. PMID 34857789. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8640049

  215. Marco, Muscioni; Chiarenza, Alfio Alessandro; Delfino, Massimo; Fabbri, Matteo; Milocco, Kevin; Fanti, Federico (2023). "Acynodon adriaticus from Villaggio del Pescatore (Campanian of Italy): Anatomical and chronostratigraphic integration improves phylogenetic resolution in Hylaeochampsidae (Eusuchia)". Cretaceous Research. 151: 105631. Bibcode:2023CrRes.15105631M. doi:10.1016/j.cretres.2023.105631. hdl:11093/5418. ISSN 0195-6671. https://dx.doi.org/10.1016/j.cretres.2023.105631

  216. Brownstein, Chase Doran (1 April 2019). "First Record of a Small Juvenile Giant Crocodyliform and its Ontogenetic and Biogeographic Implications". Bulletin of the Peabody Museum of Natural History. 60 (1): 81. doi:10.3374/014.060.0104. ISSN 0079-032X. https://bioone.org/journals/bulletin-of-the-peabody-museum-of-natural-history/volume-60/issue-1/014.060.0104/First-Record-of-a-Small-Juvenile-Giant-Crocodyliform-and-its/10.3374/014.060.0104.full

  217. Self-Trail, Jean M.; Gardner, Kristina F.; O'Keefe, Jennifer; Mason, Patricia H.; Puckett, Mark; Gibson, Michael A.; McCarty, M. Maeve (2024). "Microfossils and biostratigraphy of the Upper Cretaceous Coon Creek Formation Lagerstätte, Mississippi Embayment, USA". Geological Society, London, Special Publications. 545 (1): 717–738. doi:10.1144/SP545-2023-137. ISSN 0305-8719. https://www.lyellcollection.org/doi/10.1144/SP545-2023-137

  218. Self-Trail, Jean M.; Gardner, Kristina F.; O'Keefe, Jennifer; Mason, Patricia H.; Puckett, Mark; Gibson, Michael A.; McCarty, M. Maeve (2024). "Microfossils and biostratigraphy of the Upper Cretaceous Coon Creek Formation Lagerstätte, Mississippi Embayment, USA". Geological Society, London, Special Publications. 545 (1): 717–738. doi:10.1144/SP545-2023-137. ISSN 0305-8719. https://www.lyellcollection.org/doi/10.1144/SP545-2023-137

  219. Vrazo, M. B.; Diefendorf, A. F.; Crowley, B. E.; Czaja, A. D. (2018). "Late Cretaceous marine arthropods relied on terrestrial organic matter as a food source: Geochemical evidence from the Coon Creek Lagerstätte in the Mississippi Embayment". Geobiology. 16 (2): 160–178. doi:10.1111/gbi.12270. ISSN 1472-4677. PMID 29350453. https://onlinelibrary.wiley.com/doi/10.1111/gbi.12270

  220. Cawley, John; Lehmann, Jens; Wiese, Frank; Kriwet, Jürgen (2020). "Njoerdichthys dyckerhoffi gen. et sp. nov. (Pycnodontiformes, lower Turonian) northward migration caused by the Cretaceous Thermal Maximum". Cretaceous Research. 116: 104590. doi:10.1016/j.cretres.2020.104590. ISSN 0195-6671. PMC 7611863. PMID 34690488. https://doi.org/10.1016/j.cretres.2020.104590

  221. "PBDB". paleobiodb.org. Retrieved 12 July 2024. https://paleobiodb.org/classic/displaySearchStrataResults?group_formation_member=Baumberge

  222. Paparella, Ilaria; Palci, Alessandro; Nicosia, Umberto; Caldwell, Michael W. (2018). "A new fossil marine lizard with soft tissues from the Late Cretaceous of southern Italy". Royal Society Open Science. 5 (6): 172411. doi:10.1098/rsos.172411. ISSN 2054-5703. PMC 6030324. PMID 30110414. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6030324

  223. Jagt, John W.M.; Jagt-Yazykova, Elena A.; Kaddumi, Hani F.; Lindgren, Johan (2 October 2018). "Ammonite dating of latest Cretaceous mosasaurid reptiles (Squamata, Mosasauroidea) from Jordan—preliminary observations". Alcheringa: An Australasian Journal of Palaeontology. 42 (4): 587–596. doi:10.1080/03115518.2017.1308011. ISSN 0311-5518. https://www.tandfonline.com/doi/full/10.1080/03115518.2017.1308011

  224. Lindgren, Johan; Kaddumi, Hani F.; Polcyn, Michael J. (10 September 2013). "Soft tissue preservation in a fossil marine lizard with a bilobed tail fin". Nature Communications. 4 (1): 2423. doi:10.1038/ncomms3423. ISSN 2041-1723. PMID 24022259. https://doi.org/10.1038%2Fncomms3423

  225. DePalma, Robert; et al. (2 April 2019). "A seismically induced onshore surge deposit at the KPg boundary, North Dakota". Proceedings of the National Academy of Sciences of the United States of America. 116 (17): 8190–8199. Bibcode:2019PNAS..116.8190D. doi:10.1073/pnas.1817407116. PMC 6486721. PMID 30936306. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486721

  226. Lauridsen, B. W.; Bjerager, M. (15 December 2021). "The fauna of a Danian fossil Conservation Lagerstätten from the cold-water coral mound complex at Faxe, Denmark". Palaeogeography, Palaeoclimatology, Palaeoecology. 584: 110700. doi:10.1016/j.palaeo.2021.110700. ISSN 0031-0182. https://www.sciencedirect.com/science/article/pii/S0031018221004855

  227. Cantalice, Kleyton Magno; Martínez-Melo, Alejandra; Romero-Mayén, Violeta Amparo (30 August 2019). "The paleoichthyofauna housed in the Colección Nacional de Paleontología of Universidad Nacional Autónoma de México". Zoosystematics and Evolution. 95 (2): 429–452. doi:10.3897/zse.95.35435. ISSN 1860-0743. https://zse.pensoft.net/article/35435/

  228. Alvarado-Ortega, J; Cuevas-García, M; Melgarejo-Damián, M; Cantalice, KS.; Alaniz-Galvan, A; Solano-Templos, G; Than-Marchese, B (2015). "Paleocene fishes from Palenque, Chiapas, southeastern Mexico". Palaeontologia Electronica. doi:10.26879/536. ISSN 1094-8074. https://dx.doi.org/10.26879/536

  229. Wedmann, Sonja; Uhl, Dieter; Lehmann, Thomas; Garrouste, Romain; Nel, Andre; Gomez, Bernard; Smith, Krister T.; Schaal, S. F. K. (June 2018). "The Konservat-Lagerstätte Menat (Paleocene; France) – an overview and new insights". Geologica Acta. 16 (2): 189–213. doi:10.1344/GeologicaActa2018.16.2.5. Retrieved 29 April 2023. https://www.researchgate.net/publication/326081432

  230. Michez, Denis; De Meulemeester, Thibaut; Rasmont, Pierre; Nel, André; Patiny, Sébastien (18 February 2009). "New fossil evidence of the early diversification of bees: Paleohabropoda oudardi from the French Paleocene (Hymenoptera, Apidae, Anthophorini)". Zoologica Scripta. 38 (2): 171–181. doi:10.1111/j.1463-6409.2008.00362.x. ISSN 0300-3256. Retrieved 7 July 2024 – via Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1111/j.1463-6409.2008.00362.x

  231. Friedman, Matt; Carnevale, Giorgio (2018). "The Bolca Lagerstätten: shallow marine life in the Eocene". Journal of the Geological Society. 175 (4): 569–579. doi:10.1144/jgs2017-164. ISSN 0016-7649. https://www.lyellcollection.org/doi/10.1144/jgs2017-164

  232. Bannikov, A. F.; Erebakan, I. G. (2023). "On the Evolution of Some Groups of Marine Bony Fishes in the Cenozoic of the Tethys and Paratethys". Paleontological Journal. 57 (5): 475–490. doi:10.1134/S0031030123050015. ISSN 0031-0301. https://link.springer.com/10.1134/S0031030123050015

  233. Giusberti, Luca; Bannikov, Alexander; Boscolo Galazzo, Flavia; Fornaciari, Eliana; Frieling, Joost; Luciani, Valeria; Papazzoni, Cesare Andrea; Roghi, Guido; Schouten, Stefan; Sluijs, Appy; Bosellini, Francesca R.; Zorzin, Roberto (1 June 2014). "A new Fossil-Lagerstätte from the Lower Eocene of Lessini Mountains (northern Italy): A multidisciplinary approach". Palaeogeography, Palaeoclimatology, Palaeoecology. 403: 1–15. doi:10.1016/j.palaeo.2014.03.012. hdl:1874/309076. ISSN 0031-0182. https://www.sciencedirect.com/science/article/pii/S0031018214001199

  234. Friedman, Matt; Carnevale, Giorgio (2018). "The Bolca Lagerstätten: shallow marine life in the Eocene". Journal of the Geological Society. 175 (4): 569–579. doi:10.1144/jgs2017-164. ISSN 0016-7649. https://www.lyellcollection.org/doi/10.1144/jgs2017-164

  235. Perkovsky, E. E.; Rasnitsyn, A. P.; Vlaskin, A. P.; Taraschuk, M. V. (2007). "A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples". African Invertebrates. 48 (1): 229–245.

  236. Rikkinen, Jouko; Schmidt, Alexander R. (2018), "Morphological Convergence in Forest Microfungi Provides a Proxy for Paleogene Forest Structure", Transformative Paleobotany, Elsevier, pp. 527–549, doi:10.1016/b978-0-12-813012-4.00022-x, ISBN 978-0-12-813012-4, retrieved 12 July 2024 978-0-12-813012-4

  237. Heinrichs, Jochen; Feldberg, Kathrin; Bechteler, Julia; Regalado, Ledis; Renner, Matthew A.M.; Schäfer-Verwimp, Alfons; Gröhn, Carsten; Müller, Patrick; Schneider, Harald (2018), "A Comprehensive Assessment of the Fossil Record of Liverworts in Amber", Transformative Paleobotany, Elsevier, pp. 213–252, doi:10.1016/b978-0-12-813012-4.00012-7, ISBN 978-0-12-813012-4, retrieved 12 July 2024 978-0-12-813012-4

  238. Wolfe, Alexander P.; McKellar, Ryan C.; Tappert, Ralf; Sodhi, Rana N.S.; Muehlenbachs, Karlis (2016). "Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinite". Review of Palaeobotany and Palynology. 225: 21–32. doi:10.1016/j.revpalbo.2015.11.002. ISSN 0034-6667. https://doi.org/10.1016/j.revpalbo.2015.11.002

  239. Greenwalt, Dale E.; Rose, Tim R.; Siljestrom, Sandra M.; Goreva, Julia S.; Constenius, Kurt N.; Wingerath, Jonathan G. (24 June 2014). "Taphonomy of the Fossil Insects of the Middle Eocene Kishenehn Formation". Acta Palaeontologica Polonica. 60 (4): 931–947. doi:10.4202/app.00071.2014. S2CID 53364401. https://doi.org/10.4202%2Fapp.00071.2014

  240. Herendeen, Patrick S.; Jacobs, Bonnie F. (September 2000). "Fossil Legumes from the Middle Eocene (46.0 Ma) Mahenge Flora of Singida, Tanzania". American Journal of Botany. 87 (9): 1358–1366. doi:10.2307/2656727. JSTOR 2656727. PMID 10991905. Retrieved 29 June 2023. https://www.jstor.org/stable/2656727

  241. Schlüter, Thomas (2018). "Eocene insects from a Maar Lagerstätte at Mahenge, northern Tanzania". Entomologia Generalis. 37 (3–4): 375–392. doi:10.1127/entomologia/2017/0653. S2CID 91844938. Retrieved 29 June 2023. https://web.s.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=01718177&AN=131864569&h=vgyyeqtF3nqPl6DDjZPzEZDaiMzmmlGhBHslRi4WBMg0%2bZZfueAEmB4PBBKiKWkKtPlPxqxwLYpWzjwMRwYdDw%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3fdirect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d01718177%26AN%3d131864569

  242. Lalloy, F.; Rage, J. C.; Evans, S.E.; Boistel, R.; Lenoir, N.; Laurin, M. (2013). "A re-interpretation of the Eocene anuran Thaumastosaurus based on microCT examination of a 'mummified' specimen". PLOS One. 8 (9): 1–11. Bibcode:2013PLoSO...874874L. doi:10.1371/journal.pone.0074874. PMC 3783478. PMID 24086389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783478

  243. Halaçlar, Kazım; Rummy, Paul; Liu, Jia; Hunt, Adrian P.; Van Do, Truong; Minh, Nguyen Trung; Deng, Tao (15 September 2023). "Exceptionally well-preserved crocodilian coprolites from the Late Eocene of Northern Vietnam: Ichnology and paleoecological significance". iScience. 26 (9): 107607. doi:10.1016/j.isci.2023.107607. PMC 10470398. PMID 37664591. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470398

  244. Wolfe, Alexander P.; McKellar, Ryan C.; Tappert, Ralf; Sodhi, Rana N.S.; Muehlenbachs, Karlis (2016). "Bitterfeld amber is not Baltic amber: Three geochemical tests and further constraints on the botanical affinities of succinite". Review of Palaeobotany and Palynology. 225: 21–32. doi:10.1016/j.revpalbo.2015.11.002. ISSN 0034-6667. https://doi.org/10.1016/j.revpalbo.2015.11.002

  245. Perkovsky, E. E.; Rasnitsyn, A. P.; Vlaskin, A. P.; Taraschuk, M. V. (2007). "A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples". African Invertebrates. 48 (1): 229–245.

  246. Mirzaie Ataabadi, Majid; Bahrami, Ali; Yazdi, Mehdi; Nel, André (28 May 2019). "A locust witness of a trans-oceanic Oligocene migration between Arabia and Iran (Orthoptera: Acrididae)". Historical Biology. 31 (5): 574–580. doi:10.1080/08912963.2017.1378651. ISSN 0891-2963. https://www.tandfonline.com/doi/full/10.1080/08912963.2017.1378651

  247. Gasparelo Voltani, Cibele; Menegazzo, Mirian Costa; Galeazzi, Cristiano Padalino; Montefeltro, Felipe Chinaglia; Almeida, Renato Paes de; Anelli, Luiz Eduardo (1 September 2023). "Fish biostratinomy applied to lacustrine paleoenvironmental reconstructions: Oligocene deposits of Taubaté Basin, Brazil". Journal of South American Earth Sciences. 129: 104530. doi:10.1016/j.jsames.2023.104530. ISSN 0895-9811. https://linkinghub.elsevier.com/retrieve/pii/S0895981123003413

  248. Leonowicz, Paulina; Bienkowska-Wasiluk, Małgorzata; Ochmanski, Tomasz (15 May 2021). "Benthic microbial mats from deep-marine flysch deposits (Oligocene Menilite Formation from S Poland): Palaeoenvironmental controls on the MISS types". Sedimentary Geology. 417: 105881. doi:10.1016/j.sedgeo.2021.105881. ISSN 0037-0738. https://www.sciencedirect.com/science/article/abs/pii/S0037073821000336

  249. CoBabe, E. A. (1 June 2002). "A new insect and plant Lagerstatte from a Tertiary lake deposit along the Canyon Ferry Reservoir, southwestern Montana". Rocky Mountain Geology. 37 (1): 13–30. doi:10.2113/gsrocky.37.1.13. ISSN 1555-7332. Retrieved 8 June 2024 – via GeoScienceWorld. http://rmg.geoscienceworld.org/cgi/doi/10.2113/gsrocky.37.1.13

  250. Coster, Pauline; Legal, Stephane (8 November 2021). "An Early Oligocene Fossil Lagerstätten from the Lacustrine Deposits of the Luberon UNESCO Global Geopark". Geoconservation Research. 4 (2). doi:10.30486/gcr.2021.1915524.1068. ISSN 2588-7343. https://oiccpress.com/gcr/article/view/2800/986

  251. Maxwell, Erin E.; Alexander, Stefanie; Bechly, Günter; Eck, Kristina; Frey, Eberhard; Grimm, Kirsten; Kovar-Eder, Johanna; Mayr, Gerald; Micklich, Norbert; Rasser, Michael; Roth-Nebelsick, Anita; Salvador, Rodrigo B.; Schoch, Rainier R.; Schweigert, Günter; Stinnescbeck, Wolfgang; Wolf-Schwenniger, Karin; Ziegler, Reinhard (1 December 2016). "The Rauenberg fossil Lagerstätte (Baden-Württemberg, Germany): A window into early Oligocene marine and coastal ecosystems of Central Europe". Palaeogeography, Palaeoclimatology, Palaeoecology. 463: 238–260. Bibcode:2016PPP...463..238M. doi:10.1016/j.palaeo.2016.10.002. Retrieved 29 April 2023. https://www.sciencedirect.com/science/article/abs/pii/S0031018216305521

  252. Quan, Cheng; Fu, QiongYao; Shi, GongLe; Liu, YuSheng; Li, Long; Liu, XiaoYan; Jin, JianHua (9 January 2016). "First Oligocene mummified plant Lagerstätte at the low latitudes of East Asia". Science China Earth Sciences. 59 (3): 445–448. doi:10.1007/s11430-015-5250-z. ISSN 1674-7313. https://dx.doi.org/10.1007/s11430-015-5250-z

  253. Shi, Xiang-Gang; Fu, Qiong-Yao; Jin, Jian-Hua; Quan, Cheng (21 June 2017). "Mummified Oligocene fruits of Schima (Theaceae) and their systematic and biogeographic implications". Scientific Reports. 7 (1): 4009. doi:10.1038/s41598-017-04349-6. ISSN 2045-2322. PMC 5479851. PMID 28638066. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479851

  254. Fu, Qiong-Yao; Li, Long; Jin, Jian-Hua; Liu, Xiao-Yan; Quan, Cheng (17 May 2017). "Mummified fruits of Choerospondias nanningensis sp. nov. (Anacardiaceae) from the upper Oligocene of a low latitude site in East Asia". Journal of Systematics and Evolution. 55 (5): 477–483. doi:10.1111/jse.12255. ISSN 1674-4918. Retrieved 12 May 2024 – via Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1111/jse.12255

  255. Han, Meng; Manchester, Steven R.; Wu, Yan; Jin, Jianhua; Quan, Cheng (2 August 2017). "Fossil fruits of Canarium (Burseraceae) from Eastern Asia and their implications for phytogeographical history". Journal of Systematic Palaeontology. 16 (10): 841–852. doi:10.1080/14772019.2017.1349624. ISSN 1477-2019. Retrieved 12 May 2024 – via Taylor and Francis Online. https://www.tandfonline.com/doi/full/10.1080/14772019.2017.1349624

  256. Wedmann, Sonja; Poschmann, Markus; Hörnschemeyer, Thomas (19 November 2009). "Fossil insects from the Late Oligocene Enspel Lagerstätte and their palaeobiogeographic and palaeoclimatic significance". Palaeobiodiversity and Palaeoenvironments. 90: 49–58. doi:10.1007/s12549-009-0013-5. S2CID 84729592. https://doi.org/10.1007%2Fs12549-009-0013-5

  257. Gaudant, Jean; Nel, André; Nury, Denise; Véran, Monette; Carnevale, Giorgio (August–September 2018). "The uppermost Oligocene of Aix-en-Provence (Bouches-du-Rhône, Southern France): A Cenozoic brackish subtropical Konservat-Lagerstätte, with fishes, insects and plants". Comptes Rendus Palevol. 17 (7): 460–478. Bibcode:2018CRPal..17..460G. doi:10.1016/j.crpv.2017.08.002. S2CID 134885555. Retrieved 29 June 2023. https://www.sciencedirect.com/science/article/pii/S1631068317300799

  258. George Poinar, Jr. and Roberta Poinar, 1999. The Amber Forest: A Reconstruction of a Vanished World, (Princeton University Press) ISBN 0-691-02888-5 /wiki/ISBN_(identifier)

  259. Lee, Daphne E.; Kaulfuss, Uwe; Conran, John G.; Bannister, Jennifer M.; Lindqvist, Jon K. (11 August 2016). "Biodiversity and palaeoecology of Foulden Maar: an early Miocene Konservat-Lagerstätte deposit in southern New Zealand". Alcheringa: An Australasian Journal of Palaeontology. 40 (4): 525–541. Bibcode:2016Alch...40..525L. doi:10.1080/03115518.2016.1206321. S2CID 132004293. Retrieved 29 April 2023. https://www.tandfonline.com/doi/abs/10.1080/03115518.2016.1206321

  260. Kaulfuss, Uwe; Bannister, Jennifer M.; Conran, John G.; Kennedy, Elizabeth M.; Mildenhall, Dallas C.; Lee, Daphne E. (April 2023). "Review of flowers and inflorescences with in situ pollen from the Miocene Foulden and Hindon Konservat-Lagerstätten, southern New Zealand". Review of Palaeobotany and Palynology. 311: 104830. Bibcode:2023RPaPa.31104830K. doi:10.1016/j.revpalbo.2022.104830. S2CID 255325092. Retrieved 29 April 2023. https://www.sciencedirect.com/science/article/abs/pii/S0034666722002287

  261. Grunert, Patrick; Harzhauser, Mathias; Rögl, Fred; Sachsenhofer, Reinhard; Gratzer, Reinhard; Soliman, Ali; Piller, Werner E. (2010). "Oceanographic conditions as a trigger for the formation of an Early Miocene (Aquitanian) Konservat-Lagerstätte in the Central Paratethys Sea". Palaeogeography, Palaeoclimatology, Palaeoecology. 292 (3–4): 425–442. doi:10.1016/j.palaeo.2010.04.001. ISSN 0031-0182. https://doi.org/10.1016/j.palaeo.2010.04.001

  262. Riquelme, Francisco; Hernández-Patricio, Miguel; Martínez-Dávalos, Arnulfo; et al. (2014). "Two Flat-Backed Polydesmidan Millipedes from the Miocene Chiapas-Amber Lagerstätte, Mexico". PLOS One. 9 (8): e105877. Bibcode:2014PLoSO...9j5877R. doi:10.1371/journal.pone.0105877. PMC 4146559. PMID 25162220. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146559

  263. Mah, Christopher L.; Blake, Daniel B. (27 April 2012). "Global Diversity and Phylogeny of the Asteroidea (Echinodermata)". PLOS ONE. 7 (4): e35644. Bibcode:2012PLoSO...735644M. doi:10.1371/journal.pone.0035644. ISSN 1932-6203. PMC 3338738. PMID 22563389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338738

  264. Moser, Markus; Rössner, Gertrud E.; Göhlich, Ursula B.; Böhme, Madelaine; Fahlbusch, Volker (7 February 2009). "The fossil lagerstätte Sandelzhausen (Miocene; southern Germany): history of investigation, geology, fauna, and age". PalZ. 83: 7–23. doi:10.1007/s12542-009-0012-x. S2CID 55172519. Retrieved 29 April 2023. https://link.springer.com/article/10.1007/s12542-009-0012-x

  265. McCurry, Matthew; Cantrill, David; Smith, Patrick; et al. (2022). "A Lagerstätte from Australia provides insight into the nature of Miocene mesic ecosystems". Science Advances. 8 (1): eabm1406. Bibcode:2022SciA....8.1406M. doi:10.1126/sciadv.abm1406. PMC 8741189. PMID 34995110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741189

  266. Kočí, Tomáš; GašParič, Rok; Buckeridge, John; KočOvá Veselská, Martina; šOster, Aleš (29 May 2023). "The first record of a Konservat-Lagerstätten in which early post-settlement stages of fossil archaeobalanids (Cirripedia: Balanomorpha) are preserved". Integrative Zoology. 19 (2): 200–223. doi:10.1111/1749-4877.12728. ISSN 1749-4877. PMID 37248329. Retrieved 12 May 2024 – via Wiley Online Library. https://onlinelibrary.wiley.com/doi/10.1111/1749-4877.12728

  267. Kaulfuss, Uwe; Lee, Daphne E.; Wartho, Jo-Anne; Bowie, Elliot; Lindqvist, Jon K.; Conran, John G.; Bannister, Jennifer M.; Mildenhall, Dallas C.; Kennedy, Elizabeth M.; Gorman, Andrew R. (1 July 2018). "Geology and palaeontology of the Hindon Maar Complex: A Miocene terrestrial fossil Lagerstätte in southern New Zealand". Palaeogeography, Palaeoclimatology, Palaeoecology. 500: 52–68. Bibcode:2018PPP...500...52K. doi:10.1016/j.palaeo.2018.03.022. S2CID 134962038. Retrieved 29 April 2023. https://www.sciencedirect.com/science/article/abs/pii/S003101821830052X

  268. Kaulfuss, Uwe; Bannister, Jennifer M.; Conran, John G.; Kennedy, Elizabeth M.; Mildenhall, Dallas C.; Lee, Daphne E. (April 2023). "Review of flowers and inflorescences with in situ pollen from the Miocene Foulden and Hindon Konservat-Lagerstätten, southern New Zealand". Review of Palaeobotany and Palynology. 311: 104830. Bibcode:2023RPaPa.31104830K. doi:10.1016/j.revpalbo.2022.104830. S2CID 255325092. Retrieved 29 April 2023. https://www.sciencedirect.com/science/article/abs/pii/S0034666722002287

  269. Kaulfuss, Uwe; Lee, Daphne E.; Wartho, Jo-Anne; Bowie, Elliot; Lindqvist, Jon K.; Conran, John G.; Bannister, Jennifer M.; Mildenhall, Dallas C.; Kennedy, Elizabeth M.; Gorman, Andrew R. (1 July 2018). "Geology and palaeontology of the Hindon Maar Complex: A Miocene terrestrial fossil Lagerstätte in southern New Zealand". Palaeogeography, Palaeoclimatology, Palaeoecology. 500: 52–68. Bibcode:2018PPP...500...52K. doi:10.1016/j.palaeo.2018.03.022. S2CID 134962038. Retrieved 29 April 2023. https://www.sciencedirect.com/science/article/abs/pii/S003101821830052X

  270. Rasmussen, Cornelia; Reichenbacher, Bettina; Lenz, Olaf; Altner, Melanie; Penk, Stefanie B. R.; Prieto, Jerome; Brüsch, Dennis (28 December 2015). "Middle–late Miocene palaeoenvironments, palynological data and a fossil fish Lagerstätte from the Central Kenya Rift (East Africa)". Geological Magazine. 154 (1): 24–56. doi:10.1017/S0016756815000849. S2CID 130521301. Retrieved 29 June 2023. https://pubs.geoscienceworld.org/geolmag/article-abstract/154/1/24/350474/Middle-late-Miocene-palaeoenvironments

  271. Uhl, Dieter; Wuttke, Michael; Aiglstorfer, Manuela; Gee, Carole T.; Grandi, Federica; Höltke, Olaf; Kaiser, Thomas M.; Kaulfuss, Uwe; Lee, Daphne; Lehmann, Thomas; Oms, Oriol; Poschmann, Markus J.; Rasser, Michael W.; Schindler, Thomas; Smith, Krister T. (1 December 2024). "Deep-time maar lakes and other volcanogenic lakes as Fossil-Lagerstätten – An overview". Palaeobiodiversity and Palaeoenvironments. 104 (4): 763–848. doi:10.1007/s12549-024-00635-0. ISSN 1867-1608. https://link.springer.com/article/10.1007/s12549-024-00635-0

  272. Belaústegui, Zain; Domènech, Rosa; Martinell, Jordi (16 January 2018). "An Ichnofossil-Lagerstätte From the Miocene Vilanova Basin (NE Spain): Taphonomic and Paleoecologic Insights Related to Bioerosion Structures". PALAIOS. 33 (1): 16–28. Bibcode:2018Palai..33...16B. doi:10.2110/palo.2017.082. S2CID 135386238. Retrieved 1 May 2023. https://pubs.geoscienceworld.org/sepm/palaios/article-abstract/33/1/16/526007/AN-ICHNOFOSSIL-LAGERSTATTE-FROM-THE-MIOCENE

  273. Žalohar, Jure; Hitij, Tomaž (1 April 2017). "The first known fossil record of pipehorses (Teleostei: Syngnathidae: Haliichthyinae) from the Miocene Coprolitic Horizon from the Tunjice Hills, Slovenia". Annales de Paléontologie. 103 (2): 113–125. doi:10.1016/j.annpal.2017.04.001. ISSN 0753-3969. https://www.sciencedirect.com/science/article/pii/S0753396917300253

  274. Métais, Grégoire; Sen, Sevket (August–September 2018). "The late Miocene mammals from the Konservat-Lagerstätte of Saint-Bauzile (Ardèche, France) Conservation exceptionnelle de mammifères du Miocène supérieur à Saint-Bauzile (Ardèche, France)". Comptes Rendus Palevol. 17 (7): 479–493. doi:10.1016/j.crpv.2018.05.001. S2CID 134016889. https://doi.org/10.1016%2Fj.crpv.2018.05.001

  275. Saint Martin, Jean-Paul (April–June 2010). "The Girvanella-like remains from Messinian marine deposits (Sardinia, Italy): Lagerstätten paradigm for microbial biota?". Annales de Paléontologie. 96 (2): 33–50. doi:10.1016/j.annpal.2010.10.002. Retrieved 12 May 2024 – via Elsevier Science Direct. https://linkinghub.elsevier.com/retrieve/pii/S0753396910000200

  276. Bustillo, María Ángeles; Díaz-Molina, Margarita; López-García, María José; Delclòs, Xavier; Peláez-Campomanes, Pablo; Peñalver, Enrique; Rodríguez-Talavera, Rosario; Sanchiz, Borja (3 August 2017). "Geology and paleontology of Tresjuncos (Cuenca, Spain), a new diatomaceous deposit with Konservat-Lagerstätte characteristics from the European late Miocene". Journal of Iberian Geology. 43 (3): 395–411. doi:10.1007/s41513-017-0032-4. hdl:2445/163339. S2CID 133950518. Retrieved 29 April 2023. https://link.springer.com/article/10.1007/s41513-017-0032-4

  277. Mcnamara, M. E.; Orr, P. J.; Alcala, L.; Anadon, P.; Penalver, E. (20 March 2012). "WHAT CONTROLS THE TAPHONOMY OF EXCEPTIONALLY PRESERVED TAXA--ENVIRONMENT OR BIOLOGY? A CASE STUDY USING FROGS FROM THE MIOCENE LIBROS KONSERVAT-LAGERSTATTE (TERUEL, SPAIN)". PALAIOS. 27 (2): 63–77. doi:10.2110/palo.2010.p10-126r. ISSN 0883-1351. https://pubs.geoscienceworld.org/palaios/article/27/2/63-77/100147

  278. Kolibáč, Jiří; Adroit, Benjamin; Gröning, Elke; Brauckmann, Carsten; Wappler, Torsten (8 August 2016). "First record of the family Trogossitidae (Insecta, Coleoptera) in the Late Pliocene deposits of Willershausen (Germany)". PalZ. 90 (4): 681–689. doi:10.1007/s12542-016-0316-6. ISSN 0031-0220. Retrieved 8 June 2024 – via Springer Link. http://link.springer.com/10.1007/s12542-016-0316-6

  279. Rijsdijk, Kenneth F.; Hume, Julian P.; Bunnik, Frans; Florens, F. B. Vincent; Baider, Claudia; Shapiro, Beth; van der Plicht, Johannes; Janoo, Anwar; Griffiths, Owen; van den Hoek Ostende, Lars W.; Cremer, Holger; Vernimmen, Tamara; De Louw, Perry G. B.; Bholah, Assenjee; Saumtally, Salem (1 January 2009). "Mid-Holocene vertebrate bone Concentration-Lagerstätte on oceanic island Mauritius provides a window into the ecosystem of the dodo (Raphus cucullatus)". Quaternary Science Reviews. 28 (1): 14–24. doi:10.1016/j.quascirev.2008.09.018. ISSN 0277-3791. https://www.sciencedirect.com/science/article/pii/S0277379108002473

  280. Krueger, Andrea; McCarthy, Francine (2016). "Great Canadian Lagerstätten 5. Crawford Lake – A Canadian Holocene Lacustrine Konservat-Lagerstätte with Two-Century-Old Viable Dinoflagellate Cysts". Geoscience Canada. 43 (2): 123–132. doi:10.12789/geocanj.2016.43.086. ISSN 0315-0941. https://www.erudit.org/en/journals/geocan/2016-v43-n2-geocan02561/1036779ar/