Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
RF CMOS
Integrated circuit technology that integrates radio-frequency, analog and digital electronics

RF CMOS is a metal–oxide–semiconductor (MOS) integrated circuit (IC) technology that integrates radio-frequency (RF), analog and digital electronics on a mixed-signal CMOS (complementary MOS) RF circuit chip. It is widely used in modern wireless telecommunications, such as cellular networks, Bluetooth, Wi-Fi, GPS receivers, broadcasting, vehicular communication systems, and the radio transceivers in all modern mobile phones and wireless networking devices. RF CMOS technology was pioneered by Pakistani engineer Asad Ali Abidi at UCLA during the late 1980s to early 1990s, and helped bring about the wireless revolution with the introduction of digital signal processing in wireless communications. The development and design of RF CMOS devices was enabled by van der Ziel's FET RF noise model, which was published in the early 1960s and remained largely forgotten until the 1990s.

We don't have any images related to RF CMOS yet.
We don't have any YouTube videos related to RF CMOS yet.
We don't have any PDF documents related to RF CMOS yet.
We don't have any Books related to RF CMOS yet.
We don't have any archived web articles related to RF CMOS yet.

History

Pakistani engineer Asad Ali Abidi, while working at Bell Labs and then UCLA during the 1980s–1990s, pioneered radio research in metal–oxide–semiconductor (MOS) technology and made seminal contributions to radio architecture based on complementary MOS (CMOS) switched-capacitor (SC) technology.7 In the early 1980s, while working at Bell, he worked on the development of sub-micron MOSFET (MOS field-effect transistor) VLSI (very large-scale integration) technology, and demonstrated the potential of sub-micron NMOS integrated circuit (IC) technology in high-speed communication circuits. Abidi's work was initially met with skepticism from proponents of GaAs and bipolar junction transistors, the dominant technologies for high-speed communication circuits at the time. In 1985 he joined the University of California, Los Angeles (UCLA), where he pioneered RF CMOS technology during the late 1980s to early 1990s. His work changed the way in which RF circuits would be designed, away from discrete bipolar transistors and towards CMOS integrated circuits.8

Abidi was researching analog CMOS circuits for signal processing and communications at UCLA during the late 1980s to early 1990s.9 Abidi, along with UCLA colleagues J. Chang and Michael Gaitan, demonstrated the first RF CMOS amplifier in 1993.1011 In 1995, Abidi used CMOS switched-capacitor technology to demonstrate the first direct-conversion transceivers for digital communications.12 In the late 1990s, RF CMOS technology was widely adopted in wireless networking, as mobile phones began entering widespread use.13 This changed the way in which RF circuits were designed, leading to the replacement of discrete bipolar transistors with CMOS integrated circuits in radio transceivers.14

There was a rapid growth of the telecommunications industry towards the end of the 20th century, primarily due to the introduction of digital signal processing in wireless communications, driven by the development of low-cost, very large-scale integration (VLSI) RF CMOS technology.15 It enabled sophisticated, low-cost and portable end-user terminals, and gave rise to small, low-cost, low-power and portable units for a wide range of wireless communication systems. This enabled "anytime, anywhere" communication and helped bring about the wireless revolution, leading to the rapid growth of the wireless industry.16

In the early 2000s, RF CMOS chips with deep sub-micron MOSFETs capable of over 100 GHz frequency range were demonstrated.17 As of 2008[update], the radio transceivers in all wireless networking devices and modern mobile phones are mass-produced as RF CMOS devices.18

Applications

The baseband processors1920 and radio transceivers in all modern wireless networking devices and mobile phones are mass-produced using RF CMOS devices.21 RF CMOS circuits are widely used to transmit and receive wireless signals, in a variety of applications, such as satellite technology (including GPS and GPS receivers), Bluetooth, Wi-Fi, near-field communication (NFC), mobile networks (such as 3G and 4G), terrestrial broadcast, and automotive radar applications, among other uses.22

Examples of commercial RF CMOS chips include Intel's DECT cordless phone, and 802.11 (Wi-Fi) chips created by Atheros and other companies.23 Commercial RF CMOS products are also used for Bluetooth and Wireless LAN (WLAN) networks.24 RF CMOS is also used in the radio transceivers for wireless standards such as GSM, Wi-Fi, and Bluetooth, transceivers for mobile networks such as 3G, and remote units in wireless sensor networks (WSN).25

RF CMOS technology is crucial to modern wireless communications, including wireless networks and mobile communication devices. One of the companies that commercialized RF CMOS technology was Infineon. Its bulk CMOS RF switches sell over 1 billion units annually, reaching a cumulative 5 billion units, as of 2018[update].26

Practical software-defined radio (SDR) for commercial use was enabled by RF CMOS, which is capable of implementing an entire software-defined radio system on a single MOS IC chip.272829 RF CMOS began to be used for SDR implementations during the 2000s.30

Common applications

See also: LDMOS § Applications, List of MOSFET applications, and Power MOSFET

RF CMOS is widely used in a number of common applications, which include the following.

See also

References

  1. "Figure 1 Summary of SiGe BiCMOS and rf CMOS technology". ResearchGate. Retrieved 2019-12-07. https://www.researchgate.net/figure/Summary-of-SiGe-BiCMOS-and-rf-CMOS-technology_fig1_224103090

  2. RF CMOS Power Amplifiers: Theory, Design and Implementation. The International Series in Engineering and Computer Science. Vol. 659. Springer Science+Business Media. 2002. doi:10.1007/b117692. ISBN 0-7923-7628-5. 0-7923-7628-5

  3. A. van der Ziel (1962). "Thermal noise in field effect transistors". Proceedings of the IRE. 50 (8): 1808–1812. doi:10.1109/JRPROC.1962.288221. /wiki/Doi_(identifier)

  4. A. van der Ziel (1963). "Gate noise in field effect transistors at moderately high frequencies". Proceedings of the IEEE. 51 (3): 461–467. doi:10.1109/PROC.1963.1849. /wiki/Doi_(identifier)

  5. A. van der Ziel (1986). Noise in Solid State Devices and Circuits. Wiley-Interscience.

  6. T.M. Lee (2007). "The history and future of RF CMOS: From oxymoron to mainstream" (PDF). IEEE Int. Conf. Computer Design. http://iccd.et.tudelft.nl/2007/ICCD_2007_Keynote_TomLee_CMOS-RF.pdf

  7. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 2021-09-30. Retrieved 2019-12-07. 9788793609860

  8. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  9. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  10. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  11. Chang, J.; Abidi, Asad Ali; Gaitan, Michael (May 1993). "Large suspended inductors on silicon and their use in a 2- mu m CMOS RF amplifier". IEEE Electron Device Letters. 14 (5): 246–248. Bibcode:1993IEDL...14..246C. doi:10.1109/55.215182. ISSN 1558-0563. S2CID 27249864. /wiki/Bibcode_(identifier)

  12. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 2021-09-30. Retrieved 2019-12-07. 9788793609860

  13. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  14. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  15. Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653. 9783319011653

  16. Daneshrad, Babal; Eltawil, Ahmed M. (2002). "Integrated Circuit Technologies for Wireless Communications". Wireless Multimedia Network Technologies. The International Series in Engineering and Computer Science. 524. Springer US: 227–244. doi:10.1007/0-306-47330-5_13. ISBN 0-7923-8633-7. 0-7923-8633-7

  17. Chen, Chih-Hung; Deen, M. Jamal (2001). "RF CMOS Noise Characterization And Modeling". International Journal of High Speed Electronics and Systems. 11 (4). World Scientific Publishing Company: 1085–1157 (1085). doi:10.1142/9789812777768_0004. ISBN 9810249055. 9810249055

  18. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  19. Chen, Wai-Kai (2018). The VLSI Handbook. CRC Press. pp. 60–2. ISBN 9781420005967. 9781420005967

  20. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. p. 1. ISBN 9781461400370. 9781461400370

  21. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  22. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  23. Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Archived from the original (PDF) on 23 October 2016. Retrieved 22 October 2016. https://web.archive.org/web/20161023053607/http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf

  24. Olstein, Katherine (Spring 2008). "Abidi Receives IEEE Pederson Award at ISSCC 2008" (PDF). SSCC: IEEE Solid-State Circuits Society News. 13 (2): 12. doi:10.1109/HICSS.1997.665459. S2CID 30558989. Archived from the original (PDF) on 2019-11-07. https://web.archive.org/web/20191107054057/https://pdfs.semanticscholar.org/5d0a/e04007ed1d4ee61af3494aa0126f0ae5dcaa.pdf

  25. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  26. "Infineon Hits Bulk-CMOS RF Switch Milestone". EE Times. 20 November 2018. Retrieved 26 October 2019. https://www.eetasia.com/news/article/18112004-infineon-hits-bulk-cmos-rf-switch-milestone

  27. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370

  28. Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf

  29. "Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH

  30. Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf

  31. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370

  32. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  33. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370

  34. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  35. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  36. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  37. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  38. "TEF810X: 77GHz Automotive Radar Transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/fact-sheet/TEF810XFS.pdf

  39. "TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf

  40. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  41. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  42. "TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf

  43. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  44. "TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf

  45. "TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf

  46. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  47. "TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf

  48. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  49. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  50. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  51. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  52. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  53. "TEF810X: 77GHz Automotive Radar Transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/fact-sheet/TEF810XFS.pdf

  54. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  55. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  56. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  57. "Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH

  58. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  59. "Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH

  60. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  61. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  62. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  63. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  64. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  65. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  66. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  67. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  68. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  69. Kim, Woonyun (2015). "CMOS power amplifier design for cellular applications: an EDGE/GSM dual-mode quad-band PA in 0.18 μm CMOS". In Wang, Hua; Sengupta, Kaushik (eds.). RF and mm-Wave Power Generation in Silicon. Academic Press. pp. 89–90. ISBN 978-0-12-409522-9. 978-0-12-409522-9

  70. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  71. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  72. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  73. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370

  74. Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf

  75. "Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH

  76. Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf

  77. Chen, Wai-Kai (2018). The VLSI Handbook. CRC Press. pp. 60–2. ISBN 9781420005967. 9781420005967

  78. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. p. 1. ISBN 9781461400370. 9781461400370

  79. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  80. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  81. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  82. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  83. "Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH

  84. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  85. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X

  86. "TEF810X: 77GHz Automotive Radar Transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/fact-sheet/TEF810XFS.pdf

  87. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  88. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  89. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  90. Kim, Woonyun (2015). "CMOS power amplifier design for cellular applications: an EDGE/GSM dual-mode quad-band PA in 0.18 μm CMOS". In Wang, Hua; Sengupta, Kaushik (eds.). RF and mm-Wave Power Generation in Silicon. Academic Press. pp. 89–90. ISBN 978-0-12-409522-9. 978-0-12-409522-9

  91. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  92. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  93. "Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS

  94. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  95. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  96. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  97. Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Archived from the original (PDF) on 23 October 2016. Retrieved 22 October 2016. https://web.archive.org/web/20161023053607/http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf

  98. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  99. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  100. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  101. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  102. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  103. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  104. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  105. Olstein, Katherine (Spring 2008). "Abidi Receives IEEE Pederson Award at ISSCC 2008" (PDF). SSCC: IEEE Solid-State Circuits Society News. 13 (2): 12. doi:10.1109/HICSS.1997.665459. S2CID 30558989. Archived from the original (PDF) on 2019-11-07. https://web.archive.org/web/20191107054057/https://pdfs.semanticscholar.org/5d0a/e04007ed1d4ee61af3494aa0126f0ae5dcaa.pdf

  106. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  107. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  108. Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Archived from the original (PDF) on 23 October 2016. Retrieved 22 October 2016. https://web.archive.org/web/20161023053607/http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf

  109. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  110. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  111. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  112. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  113. Olstein, Katherine (Spring 2008). "Abidi Receives IEEE Pederson Award at ISSCC 2008" (PDF). SSCC: IEEE Solid-State Circuits Society News. 13 (2): 12. doi:10.1109/HICSS.1997.665459. S2CID 30558989. Archived from the original (PDF) on 2019-11-07. https://web.archive.org/web/20191107054057/https://pdfs.semanticscholar.org/5d0a/e04007ed1d4ee61af3494aa0126f0ae5dcaa.pdf

  114. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  115. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  116. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  117. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  118. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  119. Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi

  120. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  121. Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos

  122. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974

  123. "TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X