RF CMOS is a metal–oxide–semiconductor (MOS) integrated circuit (IC) technology that integrates radio-frequency (RF), analog and digital electronics on a mixed-signal CMOS (complementary MOS) RF circuit chip. It is widely used in modern wireless telecommunications, such as cellular networks, Bluetooth, Wi-Fi, GPS receivers, broadcasting, vehicular communication systems, and the radio transceivers in all modern mobile phones and wireless networking devices. RF CMOS technology was pioneered by Pakistani engineer Asad Ali Abidi at UCLA during the late 1980s to early 1990s, and helped bring about the wireless revolution with the introduction of digital signal processing in wireless communications. The development and design of RF CMOS devices was enabled by van der Ziel's FET RF noise model, which was published in the early 1960s and remained largely forgotten until the 1990s.
History
Pakistani engineer Asad Ali Abidi, while working at Bell Labs and then UCLA during the 1980s–1990s, pioneered radio research in metal–oxide–semiconductor (MOS) technology and made seminal contributions to radio architecture based on complementary MOS (CMOS) switched-capacitor (SC) technology.7 In the early 1980s, while working at Bell, he worked on the development of sub-micron MOSFET (MOS field-effect transistor) VLSI (very large-scale integration) technology, and demonstrated the potential of sub-micron NMOS integrated circuit (IC) technology in high-speed communication circuits. Abidi's work was initially met with skepticism from proponents of GaAs and bipolar junction transistors, the dominant technologies for high-speed communication circuits at the time. In 1985 he joined the University of California, Los Angeles (UCLA), where he pioneered RF CMOS technology during the late 1980s to early 1990s. His work changed the way in which RF circuits would be designed, away from discrete bipolar transistors and towards CMOS integrated circuits.8
Abidi was researching analog CMOS circuits for signal processing and communications at UCLA during the late 1980s to early 1990s.9 Abidi, along with UCLA colleagues J. Chang and Michael Gaitan, demonstrated the first RF CMOS amplifier in 1993.1011 In 1995, Abidi used CMOS switched-capacitor technology to demonstrate the first direct-conversion transceivers for digital communications.12 In the late 1990s, RF CMOS technology was widely adopted in wireless networking, as mobile phones began entering widespread use.13 This changed the way in which RF circuits were designed, leading to the replacement of discrete bipolar transistors with CMOS integrated circuits in radio transceivers.14
There was a rapid growth of the telecommunications industry towards the end of the 20th century, primarily due to the introduction of digital signal processing in wireless communications, driven by the development of low-cost, very large-scale integration (VLSI) RF CMOS technology.15 It enabled sophisticated, low-cost and portable end-user terminals, and gave rise to small, low-cost, low-power and portable units for a wide range of wireless communication systems. This enabled "anytime, anywhere" communication and helped bring about the wireless revolution, leading to the rapid growth of the wireless industry.16
In the early 2000s, RF CMOS chips with deep sub-micron MOSFETs capable of over 100 GHz frequency range were demonstrated.17 As of 2008[update], the radio transceivers in all wireless networking devices and modern mobile phones are mass-produced as RF CMOS devices.18
Applications
The baseband processors1920 and radio transceivers in all modern wireless networking devices and mobile phones are mass-produced using RF CMOS devices.21 RF CMOS circuits are widely used to transmit and receive wireless signals, in a variety of applications, such as satellite technology (including GPS and GPS receivers), Bluetooth, Wi-Fi, near-field communication (NFC), mobile networks (such as 3G and 4G), terrestrial broadcast, and automotive radar applications, among other uses.22
Examples of commercial RF CMOS chips include Intel's DECT cordless phone, and 802.11 (Wi-Fi) chips created by Atheros and other companies.23 Commercial RF CMOS products are also used for Bluetooth and Wireless LAN (WLAN) networks.24 RF CMOS is also used in the radio transceivers for wireless standards such as GSM, Wi-Fi, and Bluetooth, transceivers for mobile networks such as 3G, and remote units in wireless sensor networks (WSN).25
RF CMOS technology is crucial to modern wireless communications, including wireless networks and mobile communication devices. One of the companies that commercialized RF CMOS technology was Infineon. Its bulk CMOS RF switches sell over 1 billion units annually, reaching a cumulative 5 billion units, as of 2018[update].26
Practical software-defined radio (SDR) for commercial use was enabled by RF CMOS, which is capable of implementing an entire software-defined radio system on a single MOS IC chip.272829 RF CMOS began to be used for SDR implementations during the 2000s.30
Common applications
See also: LDMOS § Applications, List of MOSFET applications, and Power MOSFET
RF CMOS is widely used in a number of common applications, which include the following.
- Analog-to-digital converter (ADC)3132 — sigma-delta (ΣΔ) modulation33
- Automotive electronics — advanced driver-assistance systems (ADAS),3435 automotive safety applications, driving efficiency, lane departure warning system (LDWS), vulnerable road user (VRU) detection,36 driver assistance, rear occupant detection (ROD), rear occupant alert (ROA),37 waveform generator38
- Car front-side — lateral collision avoidance system, narrow path assist, side pre-crash system, traffic jam assist,39 adaptive cruise control (ACC),404142 autonomous emergency braking (AEB)4344
- Car rear-side — blind spot detection (BSD), Rear Pre-Crash,45 lane change assistance (LCA)4647
- Cross-Traffic Assist (CTA) technology — rear cross-traffic alert (RCTA),4849 front cross-traffic alert (FTCA)50
- Parking — automated parking, automated parking system (APS), automatic parking,51 Parking Assist (PA),52 parking sensor (ultrasonic sensor)53
- Traffic collision technology — collision avoidance system (CAS), collision detection, Collision Warning and Brake Support, Collision Mitigation Avoidance System54
- Vehicle blind spot technology — blind spot detection (BSD), blind spot monitoring (BSM), rear cross-traffic alert (RCTA)5556
- Vehicular communication systems — vehicle-to-vehicle (V2V) communication and vehicle-to-everything (V2X) communication57
- Broadcasting technology — terrestrial broadcasting58
- Mobile devices
- Mobile networks6061 — Global System for Mobile Communications (GSM),6263 3G,6465 4G,66 5G67
- Mobile phones68
- Smartphones — cellular modems (baseband), RF transceivers, wireless communication chips (Wi-Fi, Bluetooth, GPS)69
- Radio technology70 — radio-frequency (RF) technology,71 radio receivers, transmitters,72 software-defined radio (SDR),737475 wideband76
- Baseband processors7778
- Millimeter-wave (mmW) applications79
- Radar technology80 — automotive radar,818283 radar transceivers, imaging radar, super-resolution (SR) imaging, radar cocooning with 360° perception,84 cocoon radar, Frequency Modulated Continuous Wave (FMCW) radar,85 corner radar functions, radar tracker86
- Transceivers87 — radio transceivers,8889 RF transceivers,9091 cellular transceivers92
- Sensors — radar sensors,93 wireless sensor network (WSN)94
- System-on-a-chip (SoC)9596
- Telecommunications
- Digital Enhanced Cordless Telecommunications (DECT)97
- Internet of things (IoT) — Narrowband IoT, Cat-M198
- Satellite communication99100 — Global Positioning System (GPS),101 GPS receivers102
- Short-range devices103 — Bluetooth,104105106 Bluetooth Low Energy (BLE), IEEE 802.15.4,107 IEEE 802.11,108 Wi-Fi109110111
- Wireless networks — wireless networking devices,112 wireless local area network (WLAN),113114 wide area network (WAN),115 mobile networks116117
- Wireless technology118119 — wireless telecommunications,120 backhaul,121 near-field communication (NFC)122
- Voltage-controlled oscillator (VCO) — low phase noise VCO123
See also
- Digital telephony
- History of telecommunication
- LDMOS
- Mixed-signal integrated circuit
- MOS integrated circuit
- Power MOSFET
- Radio-frequency engineering
- RF module
- RF power amplifier
- RFIC
- Semiconductor device fabrication
References
"Figure 1 Summary of SiGe BiCMOS and rf CMOS technology". ResearchGate. Retrieved 2019-12-07. https://www.researchgate.net/figure/Summary-of-SiGe-BiCMOS-and-rf-CMOS-technology_fig1_224103090 ↩
RF CMOS Power Amplifiers: Theory, Design and Implementation. The International Series in Engineering and Computer Science. Vol. 659. Springer Science+Business Media. 2002. doi:10.1007/b117692. ISBN 0-7923-7628-5. 0-7923-7628-5 ↩
A. van der Ziel (1962). "Thermal noise in field effect transistors". Proceedings of the IRE. 50 (8): 1808–1812. doi:10.1109/JRPROC.1962.288221. /wiki/Doi_(identifier) ↩
A. van der Ziel (1963). "Gate noise in field effect transistors at moderately high frequencies". Proceedings of the IEEE. 51 (3): 461–467. doi:10.1109/PROC.1963.1849. /wiki/Doi_(identifier) ↩
A. van der Ziel (1986). Noise in Solid State Devices and Circuits. Wiley-Interscience. ↩
T.M. Lee (2007). "The history and future of RF CMOS: From oxymoron to mainstream" (PDF). IEEE Int. Conf. Computer Design. http://iccd.et.tudelft.nl/2007/ICCD_2007_Keynote_TomLee_CMOS-RF.pdf ↩
Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 2021-09-30. Retrieved 2019-12-07. 9788793609860 ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
Chang, J.; Abidi, Asad Ali; Gaitan, Michael (May 1993). "Large suspended inductors on silicon and their use in a 2- mu m CMOS RF amplifier". IEEE Electron Device Letters. 14 (5): 246–248. Bibcode:1993IEDL...14..246C. doi:10.1109/55.215182. ISSN 1558-0563. S2CID 27249864. /wiki/Bibcode_(identifier) ↩
Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 2021-09-30. Retrieved 2019-12-07. 9788793609860 ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653. 9783319011653 ↩
Daneshrad, Babal; Eltawil, Ahmed M. (2002). "Integrated Circuit Technologies for Wireless Communications". Wireless Multimedia Network Technologies. The International Series in Engineering and Computer Science. 524. Springer US: 227–244. doi:10.1007/0-306-47330-5_13. ISBN 0-7923-8633-7. 0-7923-8633-7 ↩
Chen, Chih-Hung; Deen, M. Jamal (2001). "RF CMOS Noise Characterization And Modeling". International Journal of High Speed Electronics and Systems. 11 (4). World Scientific Publishing Company: 1085–1157 (1085). doi:10.1142/9789812777768_0004. ISBN 9810249055. 9810249055 ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Chen, Wai-Kai (2018). The VLSI Handbook. CRC Press. pp. 60–2. ISBN 9781420005967. 9781420005967 ↩
Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. p. 1. ISBN 9781461400370. 9781461400370 ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Archived from the original (PDF) on 23 October 2016. Retrieved 22 October 2016. https://web.archive.org/web/20161023053607/http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf ↩
Olstein, Katherine (Spring 2008). "Abidi Receives IEEE Pederson Award at ISSCC 2008" (PDF). SSCC: IEEE Solid-State Circuits Society News. 13 (2): 12. doi:10.1109/HICSS.1997.665459. S2CID 30558989. Archived from the original (PDF) on 2019-11-07. https://web.archive.org/web/20191107054057/https://pdfs.semanticscholar.org/5d0a/e04007ed1d4ee61af3494aa0126f0ae5dcaa.pdf ↩
Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708 ↩
"Infineon Hits Bulk-CMOS RF Switch Milestone". EE Times. 20 November 2018. Retrieved 26 October 2019. https://www.eetasia.com/news/article/18112004-infineon-hits-bulk-cmos-rf-switch-milestone ↩
Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370 ↩
Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf ↩
"Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH ↩
Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf ↩
Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370 ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370 ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
"TEF810X: 77GHz Automotive Radar Transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/fact-sheet/TEF810XFS.pdf ↩
"TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
"TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf ↩
"TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X: 76 GHz to 81 GHz car RADAR transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/data-sheet/TEF810XDS.pdf ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
"TEF810X: 77GHz Automotive Radar Transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/fact-sheet/TEF810XFS.pdf ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
"Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
"Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708 ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708 ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Kim, Woonyun (2015). "CMOS power amplifier design for cellular applications: an EDGE/GSM dual-mode quad-band PA in 0.18 μm CMOS". In Wang, Hua; Sengupta, Kaushik (eds.). RF and mm-Wave Power Generation in Silicon. Academic Press. pp. 89–90. ISBN 978-0-12-409522-9. 978-0-12-409522-9 ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370 ↩
Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf ↩
"Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH ↩
Leenaerts, Domine (May 2010). Wide band RF CMOS circuit design techniques (PDF). IEEE Solid-State Circuits Society Distinguished Lecturers Program (SSCS DLP). NXP Semiconductors. Retrieved 10 December 2019. https://ewh.ieee.org/r5/denver/sscs/Presentations/2010_05_Leenaerts.pdf ↩
Chen, Wai-Kai (2018). The VLSI Handbook. CRC Press. pp. 60–2. ISBN 9781420005967. 9781420005967 ↩
Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. p. 1. ISBN 9781461400370. 9781461400370 ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
"Software-defined-radio Technology". NXP Semiconductors. Retrieved 11 December 2019. https://www.nxp.com/products/audio/multi-standard-digital-radio/software-defined-radio-technology:SW-DEFINED-RADIO-TECH ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩
"TEF810X: 77GHz Automotive Radar Transceiver" (PDF). NXP Semiconductors. Retrieved 20 December 2019. https://www.nxp.com/docs/en/fact-sheet/TEF810XFS.pdf ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
Kim, Woonyun (2015). "CMOS power amplifier design for cellular applications: an EDGE/GSM dual-mode quad-band PA in 0.18 μm CMOS". In Wang, Hua; Sengupta, Kaushik (eds.). RF and mm-Wave Power Generation in Silicon. Academic Press. pp. 89–90. ISBN 978-0-12-409522-9. 978-0-12-409522-9 ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
"Radar Transceivers". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers:MITERWAVEICS ↩
Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708 ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Archived from the original (PDF) on 23 October 2016. Retrieved 22 October 2016. https://web.archive.org/web/20161023053607/http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
Olstein, Katherine (Spring 2008). "Abidi Receives IEEE Pederson Award at ISSCC 2008" (PDF). SSCC: IEEE Solid-State Circuits Society News. 13 (2): 12. doi:10.1109/HICSS.1997.665459. S2CID 30558989. Archived from the original (PDF) on 2019-11-07. https://web.archive.org/web/20191107054057/https://pdfs.semanticscholar.org/5d0a/e04007ed1d4ee61af3494aa0126f0ae5dcaa.pdf ↩
Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708 ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Archived from the original (PDF) on 23 October 2016. Retrieved 22 October 2016. https://web.archive.org/web/20161023053607/http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
Oliveira, Joao; Goes, João (2012). Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708 ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Olstein, Katherine (Spring 2008). "Abidi Receives IEEE Pederson Award at ISSCC 2008" (PDF). SSCC: IEEE Solid-State Circuits Society News. 13 (2): 12. doi:10.1109/HICSS.1997.665459. S2CID 30558989. Archived from the original (PDF) on 2019-11-07. https://web.archive.org/web/20191107054057/https://pdfs.semanticscholar.org/5d0a/e04007ed1d4ee61af3494aa0126f0ae5dcaa.pdf ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Abidi, Asad Ali (April 2004). "RF CMOS comes of age". IEEE Journal of Solid-State Circuits. 39 (4): 549–561. Bibcode:2004IJSSC..39..549A. doi:10.1109/JSSC.2004.825247. ISSN 1558-173X. S2CID 23186298. /wiki/Asad_Ali_Abidi ↩
O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier) ↩
Priyanka (20 October 2016). "RF CMOS". GlobalFoundries. Retrieved 7 December 2019. https://www.globalfoundries.com/technology-solutions/cmos/mainstream/rf-cmos ↩
Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 243. ISBN 9783319475974. 9783319475974 ↩
"TEF810X Fully-Integrated 77 GHz Radar Transceiver". NXP Semiconductors. Retrieved 16 December 2019. https://www.nxp.com/products/rf/radar-transceivers/tef810x-fully-integrated-77-ghz-radar-transceiver:TEF810X ↩