Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
List of MOSFET applications
List article

The MOSFET (metal–oxide–semiconductor field-effect transistor) is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals.

The MOSFET is the basic building block of most modern electronics, and the most frequently manufactured device in history, with an estimated total of 13 sextillion (1.3 × 1022) MOSFETs manufactured between 1960 and 2018. It is the most common semiconductor device in digital and analog circuits, and the most common power device. It was the first truly compact transistor that could be miniaturized and mass-produced for a wide range of uses. MOSFET scaling and miniaturization has been driving the rapid exponential growth of electronic semiconductor technology since the 1960s, and enable high-density integrated circuits (ICs) such as memory chips and microprocessors.

MOSFETs in integrated circuits are the primary elements of computer processors, semiconductor memory, image sensors, and most other types of integrated circuits. Discrete MOSFET devices are widely used in applications such as switch mode power supplies, variable-frequency drives, and other power electronics applications where each device may be switching thousands of watts. Radio-frequency amplifiers up to the UHF spectrum use MOSFET transistors as analog signal and power amplifiers. Radio systems also use MOSFETs as oscillators, or mixers to convert frequencies. MOSFET devices are also applied in audio-frequency power amplifiers for public address systems, sound reinforcement, and home and automobile sound systems.

Integrated circuits

See also: Integrated circuit, Invention of the integrated circuit, and Three-dimensional integrated circuit

The MOSFET is the most widely used type of transistor and the most critical device component in integrated circuit (IC) chips.2 Planar process, developed by Jean Hoerni at Fairchild Semiconductor in early 1959, was critical to the invention of the monolithic integrated circuit chip by Robert Noyce later in 1959.345 The MOSFET was invented at Bell Labs between 1955 and 1960.678910 This was followed by the development of clean rooms to reduce contamination to levels never before thought necessary, and coincided with the development of photolithography11 which, along with surface passivation and the planar process, allowed circuits to be made in few steps.

Atalla realised that the main advantage of a MOS transistor was its ease of fabrication, particularly suiting it for use in the recently invented integrated circuits.12 In contrast to bipolar transistors which required a number of steps for the p–n junction isolation of transistors on a chip, MOSFETs required no such steps but could be easily isolated from each other.13 Its advantage for integrated circuits was re-iterated by Dawon Kahng in 1961.14 The SiSiO2 system possessed the technical attractions of low cost of production (on a per circuit basis) and ease of integration. These two factors, along with its rapidly scaling miniaturization and low energy consumption, led to the MOSFET becoming the most widely used type of transistor in IC chips.

The earliest experimental MOS IC to be demonstrated was a 16-transistor chip built by Fred Heiman and Steven Hofstein at RCA in 1962.15 General Microelectronics later introduced the first commercial MOS integrated circuits in 1964, consisting of 120 p-channel transistors.16 It was a 20-bit shift register, developed by Robert Norman17 and Frank Wanlass.18 In 1967, Bell Labs researchers Robert Kerwin, Donald Klein and John Sarace developed the self-aligned gate (silicon-gate) MOS transistor, which Fairchild Semiconductor researchers Federico Faggin and Tom Klein used to develop the first silicon-gate MOS IC.19

Chips

There are various different types of MOS IC chips, which include the following.20

Large-scale integration

See also: Large-scale integration and Very large-scale integration

With its high scalability,46 and much lower power consumption and higher density than bipolar junction transistors,47 the MOSFET made it possible to build high-density IC chips.48 By 1964, MOS chips had reached higher transistor density and lower manufacturing costs than bipolar chips. MOS chips further increased in complexity at a rate predicted by Moore's law, leading to large-scale integration (LSI) with hundreds of MOSFETs on a chip by the late 1960s.49 MOS technology enabled the integration of more than 10,000 transistors on a single LSI chip by the early 1970s,50 before later enabling very large-scale integration (VLSI).5152

Microprocessors

See also: Microcontroller and Microprocessor chronology

The MOSFET is the basis of every microprocessor,53 and was responsible for the invention of the microprocessor.54 The origins of both the microprocessor and the microcontroller can be traced back to the invention and development of MOS technology. The application of MOS LSI chips to computing was the basis for the first microprocessors, as engineers began recognizing that a complete computer processor could be contained on a single MOS LSI chip.55

The earliest microprocessors were all MOS chips, built with MOS LSI circuits. The first multi-chip microprocessors, the Four-Phase Systems AL1 in 1969 and the Garrett AiResearch MP944 in 1970, were developed with multiple MOS LSI chips. The first commercial single-chip microprocessor, the Intel 4004, was developed by Federico Faggin, using his silicon-gate MOS IC technology, with Intel engineers Marcian Hoff and Stan Mazor, and Busicom engineer Masatoshi Shima.56 With the arrival of CMOS microprocessors in 1975, the term "MOS microprocessors" began to refer to chips fabricated entirely from PMOS logic or fabricated entirely from NMOS logic, contrasted with "CMOS microprocessors" and "bipolar bit-slice processors".57

CMOS circuits

Main article: CMOS

Complementary metal–oxide–semiconductor (CMOS) logic58 was developed by Chih-Tang Sah and Frank Wanlass at Fairchild Semiconductor in 1963.59 CMOS had lower power consumption, but was initially slower than NMOS, which was more widely used for computers in the 1970s. In 1978, Hitachi introduced the twin-well CMOS process, which allowed CMOS to match the performance of NMOS with less power consumption. The twin-well CMOS process eventually overtook NMOS as the most common semiconductor manufacturing process for computers in the 1980s.60 By the 1980s CMOS logic consumed over 7 times less power than NMOS logic,61 and about 100,000 times less power than bipolar transistor-transistor logic (TTL).62

Digital

The growth of digital technologies like the microprocessor has provided the motivation to advance MOSFET technology faster than any other type of silicon-based transistor.63 A big advantage of MOSFETs for digital switching is that the oxide layer between the gate and the channel prevents DC current from flowing through the gate, further reducing power consumption and giving a very large input impedance. The insulating oxide between the gate and channel effectively isolates a MOSFET in one logic stage from earlier and later stages, which allows a single MOSFET output to drive a considerable number of MOSFET inputs. Bipolar transistor-based logic (such as TTL) does not have such a high fanout capacity. This isolation also makes it easier for the designers to ignore to some extent loading effects between logic stages independently. That extent is defined by the operating frequency: as frequencies increase, the input impedance of the MOSFETs decreases.

Analog

Further information: CMOS amplifier and Mixed-signal integrated circuit

The MOSFET's advantages in digital circuits do not translate into supremacy in all analog circuits. The two types of circuit draw upon different features of transistor behavior. Digital circuits switch, spending most of their time either fully on or fully off. The transition from one to the other is only of concern with regards to speed and charge required. Analog circuits depend on operation in the transition region where small changes to Vgs can modulate the output (drain) current. The JFET and bipolar junction transistor (BJT) are preferred for accurate matching (of adjacent devices in integrated circuits), higher transconductance and certain temperature characteristics which simplify keeping performance predictable as circuit temperature varies.

Nevertheless, MOSFETs are widely used in many types of analog circuits because of their own advantages (zero gate current, high and adjustable output impedance and improved robustness vs. BJTs which can be permanently degraded by even lightly breaking down the emitter-base). The characteristics and performance of many analog circuits can be scaled up or down by changing the sizes (length and width) of the MOSFETs used. By comparison, in bipolar transistors the size of the device does not significantly affect its performance. MOSFETs' ideal characteristics regarding gate current (zero) and drain-source offset voltage (zero) also make them nearly ideal switch elements, and also make switched capacitor analog circuits practical. In their linear region, MOSFETs can be used as precision resistors, which can have a much higher controlled resistance than BJTs. In high power circuits, MOSFETs sometimes have the advantage of not suffering from thermal runaway as BJTs do.[dubious – discuss] Also, MOSFETs can be configured to perform as capacitors and gyrator circuits which allow op-amps made from them to appear as inductors, thereby allowing all of the normal analog devices on a chip (except for diodes, which can be made smaller than a MOSFET anyway) to be built entirely out of MOSFETs. This means that complete analog circuits can be made on a silicon chip in a much smaller space and with simpler fabrication techniques. MOSFETS are ideally suited to switch inductive loads because of tolerance to inductive kickback.

Some ICs combine analog and digital MOSFET circuitry on a single mixed-signal integrated circuit, making the needed board space even smaller. This creates a need to isolate the analog circuits from the digital circuits on a chip level, leading to the use of isolation rings and silicon on insulator (SOI). Since MOSFETs require more space to handle a given amount of power than a BJT, fabrication processes can incorporate BJTs and MOSFETs into a single device. Mixed-transistor devices are called bi-FETs (bipolar FETs) if they contain just one BJT-FET and BiCMOS (bipolar-CMOS) if they contain complementary BJT-FETs. Such devices have the advantages of both insulated gates and higher current density.

RF CMOS

Main article: RF CMOS

In the late 1980s, Asad Abidi pioneered RF CMOS technology, which uses MOS VLSI circuits, while working at UCLA. This changed the way in which RF circuits were designed, away from discrete bipolar transistors and towards CMOS integrated circuits. As of 2008, the radio transceivers in all wireless networking devices and modern mobile phones are mass-produced as RF CMOS devices. RF CMOS is also used in nearly all modern Bluetooth and wireless LAN (WLAN) devices.64

Analog switches

MOSFET analog switches use the MOSFET to pass analog signals when on, and as a high impedance when off. Signals flow in both directions across a MOSFET switch. In this application, the drain and source of a MOSFET exchange places depending on the relative voltages of the source/drain electrodes. The source is the more negative side for an N-MOS or the more positive side for a P-MOS. All of these switches are limited on what signals they can pass or stop by their gate–source, gate–drain, and source–drain voltages; exceeding the voltage, current, or power limits will potentially damage the switch.

Single-type

This analog switch uses a four-terminal simple MOSFET of either P or N type.

In the case of an n-type switch, the body is connected to the most negative supply (usually GND) and the gate is used as the switch control. Whenever the gate voltage exceeds the source voltage by at least a threshold voltage, the MOSFET conducts. The higher the voltage, the more the MOSFET can conduct. An N-MOS switch passes all voltages less than Vgate − Vtn. When the switch is conducting, it typically operates in the linear (or ohmic) mode of operation, since the source and drain voltages will typically be nearly equal.

In the case of a P-MOS, the body is connected to the most positive voltage, and the gate is brought to a lower potential to turn the switch on. The P-MOS switch passes all voltages higher than Vgate − Vtp (threshold voltage Vtp is negative in the case of enhancement-mode P-MOS).

Dual-type (CMOS)

This "complementary" or CMOS type of switch uses one P-MOS and one N-MOS FET to counteract the limitations of the single-type switch. The FETs have their drains and sources connected in parallel, the body of the P-MOS is connected to the high potential (VDD) and the body of the N-MOS is connected to the low potential (gnd). To turn the switch on, the gate of the P-MOS is driven to the low potential and the gate of the N-MOS is driven to the high potential. For voltages between VDD − Vtn and gndVtp, both FETs conduct the signal; for voltages less than gndVtp, the N-MOS conducts alone; and for voltages greater than VDD − Vtn, the P-MOS conducts alone.

The voltage limits for this switch are the gate–source, gate–drain and source–drain voltage limits for both FETs. Also, the P-MOS is typically two to three times wider than the N-MOS, so the switch will be balanced for speed in the two directions.

Tri-state circuitry sometimes incorporates a CMOS MOSFET switch on its output to provide for a low-ohmic, full-range output when on, and a high-ohmic, mid-level signal when off.

MOS memory

Main article: MOS memory

Further information: Computer memory and Memory cell (computing)

The advent of the MOSFET enabled the practical use of MOS transistors as memory cell storage elements, a function previously served by magnetic cores in computer memory. The first modern computer memory was introduced in 1965, when John Schmidt at Fairchild Semiconductor designed the first MOS semiconductor memory, a 64-bit MOS SRAM (static random-access memory).65 SRAM became an alternative to magnetic-core memory, but required six MOS transistors for each bit of data.66

MOS technology is the basis for DRAM (dynamic random-access memory). In 1966, Dr. Robert H. Dennard at the IBM Thomas J. Watson Research Center was working on MOS memory. While examining the characteristics of MOS technology, he found it was capable of building capacitors, and that storing a charge or no charge on the MOS capacitor could represent the 1 and 0 of a bit, while the MOS transistor could control writing the charge to the capacitor. This led to his development of a single-transistor DRAM memory cell.67 In 1967, Dennard filed a patent under IBM for a single-transistor DRAM (dynamic random-access memory) memory cell, based on MOS technology.68 MOS memory enabled higher performance, was cheaper, and consumed less power, than magnetic-core memory, leading to MOS memory overtaking magnetic core memory as the dominant computer memory technology by the early 1970s.69

Frank Wanlass, while studying MOSFET structures in 1963, noted the movement of charge through oxide onto a gate. While he did not pursue it, this idea would later become the basis for EPROM (erasable programmable read-only memory) technology.70 In 1967, Dawon Kahng and Simon Sze proposed that floating-gate memory cells, consisting of floating-gate MOSFETs (FGMOS), could be used to produce reprogrammable ROM (read-only memory).71 Floating-gate memory cells later became the basis for non-volatile memory (NVM) technologies including EPROM, EEPROM (electrically erasable programmable ROM) and flash memory.72

Types of MOS memory

Further information: MOS memory § Applications

There are various different types of MOS memory. The following list includes various different MOS memory types.73

MOS sensors

A number of MOSFET sensors have been developed, for measuring physical, chemical, biological and environmental parameters.101 The earliest MOSFET sensors include the open-gate FET (OGFET) introduced by Johannessen in 1970,102 the ion-sensitive field-effect transistor (ISFET) invented by Piet Bergveld in 1970,103 the adsorption FET (ADFET) patented by P.F. Cox in 1974, and a hydrogen-sensitive MOSFET demonstrated by I. Lundstrom, M.S. Shivaraman, C.S. Svenson and L. Lundkvist in 1975.104 The ISFET is a special type of MOSFET with a gate at a certain distance,105 and where the metal gate is replaced by an ion-sensitive membrane, electrolyte solution and reference electrode.106

By the mid-1980s, numerous other MOSFET sensors had been developed, including the gas sensor FET (GASFET), surface accessible FET (SAFET), charge flow transistor (CFT), pressure sensor FET (PRESSFET), chemical field-effect transistor (ChemFET), reference ISFET (REFET), biosensor FET (BioFET), enzyme-modified FET (ENFET) and immunologically modified FET (IMFET).107 By the early 2000s, BioFET types such as the DNA field-effect transistor (DNAFET), gene-modified FET (GenFET) and cell-potential BioFET (CPFET) had been developed.108

The two main types of image sensors used in digital imaging technology are the charge-coupled device (CCD) and the active-pixel sensor (CMOS sensor). Both CCD and CMOS sensors are based on MOS technology, with the CCD based on MOS capacitors and the CMOS sensor based on MOS transistors.109

Image sensors

Main articles: Image sensor, Charge-coupled device, and Active-pixel sensor

MOS technology is the basis for modern image sensors, including the charge-coupled device (CCD) and the CMOS active-pixel sensor (CMOS sensor), used in digital imaging and digital cameras.110 Willard Boyle and George E. Smith developed the CCD in 1969. While researching the MOS process, they realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor. As it was fairly straightforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that the charge could be stepped along from one to the next.111 The CCD is a semiconductor circuit that was later used in the first digital video cameras for television broadcasting.112

The MOS active-pixel sensor (APS) was developed by Tsutomu Nakamura at Olympus in 1985.113 The CMOS active-pixel sensor was later developed by Eric Fossum and his team at NASA's Jet Propulsion Laboratory in the early 1990s.114

MOS image sensors are widely used in optical mouse technology. The first optical mouse, invented by Richard F. Lyon at Xerox in 1980, used a 5 μm NMOS sensor chip.115116 Since the first commercial optical mouse, the IntelliMouse introduced in 1999, most optical mouse devices use CMOS sensors.117

Other sensors

MOS sensors, also known as MOSFET sensors, are widely used to measure physical, chemical, biological and environmental parameters.118 The ion-sensitive field-effect transistor (ISFET), for example, is widely used in biomedical applications.119

MOSFETs are also widely used in microelectromechanical systems (MEMS), as silicon MOSFETs could interact and communicate with the surroundings and process things such as chemicals, motions and light.120 An early example of a MEMS device is the resonant-gate transistor, an adaptation of the MOSFET, developed by Harvey C. Nathanson in 1965.121

Common applications of other MOS sensors include the following.

Power MOSFET

See also: Power MOSFET, LDMOS § Applications, VMOS, FET amplifier, MOS-controlled thyristor, Power electronics, and Power semiconductor device

The power MOSFET, which is commonly used in power electronics, was developed in the early 1970s.137 The power MOSFET enables low gate drive power, fast switching speed, and advanced paralleling capability.138

The power MOSFET is the most widely used power device in the world.139 Advantages over bipolar junction transistors in power electronics include MOSFETs not requiring a continuous flow of drive current to remain in the ON state, offering higher switching speeds, lower switching power losses, lower on-resistances, and reduced susceptibility to thermal runaway.140 The power MOSFET had an impact on power supplies, enabling higher operating frequencies, size and weight reduction, and increased volume production.141

Switching power supplies are the most common applications for power MOSFETs.142 They are also widely used for MOS RF power amplifiers, which enabled the transition of mobile networks from analog to digital in the 1990s. This led to the wide proliferation of wireless mobile networks, which revolutionised telecommunications systems.143 The LDMOS in particular is the most widely used power amplifier in mobile networks such as 2G, 3G,144 4G and 5G,145 as well as broadcasting and amateur radio.146 Over 50 billion discrete power MOSFETs are shipped annually, as of 2018. They are widely used for automotive, industrial and communications systems in particular.147 Power MOSFETs are commonly used in automotive electronics, particularly as switching devices in electronic control units,148 and as power converters in modern electric vehicles.149 The insulated-gate bipolar transistor (IGBT), a hybrid MOS-bipolar transistor, is also used for a wide variety of applications.150

LDMOS, a power MOSFET with lateral structure, is commonly used in high-end audio amplifiers and high-power PA systems. Their advantage is a better behaviour in the saturated region (corresponding to the linear region of a bipolar transistor) than the vertical MOSFETs. Vertical MOSFETs are designed for switching applications.151

DMOS and VMOS

Further information: LDMOS § Applications

Power MOSFETs, including DMOS, LDMOS and VMOS devices, are commonly used for a wide range of other applications, which include the following.

RF DMOS

Further information: RF CMOS § Applications

RF DMOS, also known as RF power MOSFET, is a type of DMOS power transistor designed for radio-frequency (RF) applications. It is used in various radio and RF applications, which include the following.238239

Consumer electronics

MOSFETs are fundamental to the consumer electronics industry.263 According to Colinge, numerous consumer electronics would not exist without the MOSFET, such as digital wristwatches, pocket calculators, and video games, for example.264

MOSFETs are commonly used for a wide range of consumer electronics, which include the following devices listed. Computers or telecommunication devices (such as phones) are not included here, but are listed separately in the Information and communications technology (ICT) section below.

Pocket calculators

One of the earliest influential consumer electronic products enabled by MOS LSI circuits was the electronic pocket calculator,324 as MOS LSI technology enabled large amounts of computational capability in small packages.325 In 1965, the Victor 3900 desktop calculator was the first MOS LSI calculator, with 29 MOS LSI chips.326 In 1967 the Texas Instruments Cal-Tech was the first prototype electronic handheld calculator, with three MOS LSI chips, and it was later released as the Canon Pocketronic in 1970.327 The Sharp QT-8D desktop calculator was the first mass-produced LSI MOS calculator in 1969,328 and the Sharp EL-8 which used four MOS LSI chips was the first commercial electronic handheld calculator in 1970.329 The first true electronic pocket calculator was the Busicom LE-120A HANDY LE, which used a single MOS LSI calculator-on-a-chip from Mostek, and was released in 1971.330 By 1972, MOS LSI circuits were commercialized for numerous other applications.331

Audio-visual (AV) media

MOSFETs are commonly used for a wide range of audio-visual (AV) media technologies, which include the following list of applications.332

Power MOSFET applications

Power MOSFETs are commonly used for a wide range of consumer electronics.426427 Power MOSFETs are widely used in the following consumer applications.

Information and communications technology (ICT)

MOSFETs are fundamental to information and communications technology (ICT),496497 including modern computers,498499500 modern computing,501 telecommunications, the communications infrastructure,502503 the Internet,504505506 digital telephony,507 wireless telecommunications,508509 and mobile networks.510 According to Colinge, the modern computer industry and digital telecommunication systems would not exist without the MOSFET.511 Advances in MOS technology has been the most important contributing factor in the rapid rise of network bandwidth in telecommunication networks, with bandwidth doubling every 18 months, from bits per second to terabits per second (Edholm's law).512

Computers

MOSFETs are commonly used in a wide range of computers and computing applications, which include the following.

Telecommunications

Further information: RF CMOS § Applications

MOSFETs are commonly used in a wide range of telecommunications, which include the following applications.

Power MOSFET applications

Further information: LDMOS § Applications

Insulated-gate bipolar transistor (IGBT)

See also: Insulated-gate bipolar transistor

The insulated-gate bipolar transistor (IGBT) is a power transistor with characteristics of both a MOSFET and bipolar junction transistor (BJT).758 As of 2010[update], the IGBT is the second most widely used power transistor, after the power MOSFET. The IGBT accounts for 27% of the power transistor market, second only to the power MOSFET (53%), and ahead of the RF amplifier (11%) and bipolar junction transistor (9%).759 The IGBT is widely used in consumer electronics, industrial technology, the energy sector, aerospace electronic devices, and transportation.

The IGBT is widely used in the following applications.

Quantum physics

2D electron gas and quantum Hall effect

Main articles: Two-dimensional electron gas and Quantum Hall effect

In quantum physics and quantum mechanics, the MOSFET is the basis for two-dimensional electron gas (2DEG)811 and the quantum Hall effect.812813 The MOSFET enables physicists to study electron behavior in a two-dimensional gas, called a two-dimensional electron gas. In a MOSFET, conduction electrons travel in a thin surface layer, and a "gate" voltage controls the number of charge carriers in this layer. This allows researchers to explore quantum effects by operating high-purity MOSFETs at liquid helium temperatures.814

In 1978, the Gakushuin University researchers Jun-ichi Wakabayashi and Shinji Kawaji observed the Hall effect in experiments carried out on the inversion layer of MOSFETs.815 In 1980, Klaus von Klitzing, working at the high magnetic field laboratory in Grenoble with silicon-based MOSFET samples developed by Michael Pepper and Gerhard Dorda, made the unexpected discovery of the quantum Hall effect.816817

Quantum technology

Further information: QFET

The MOSFET is used in quantum technology.818 A quantum field-effect transistor (QFET) or quantum well field-effect transistor (QWFET) is a type of MOSFET819820821 that takes advantage of quantum tunneling to greatly increase the speed of transistor operation.822

Transportation

MOSFETs are widely used in transportation.823824825 For example, they are commonly used for automotive electronics in the automotive industry.826827 MOS technology is commonly used for a wide range of vehicles and transportation, which include the following applications.

Automotive industry

Further information: Automotive electronics

MOSFETs are widely used in the automotive industry,849850 particularly for automotive electronics851 in motor vehicles. Automotive applications include the following.

Power MOSFET applications

Power MOSFETs are widely used in transportation technology,877878879 which includes the following vehicles.

In the automotive industry,899900901 power MOSFETs are widely used in automotive electronics,902903904 which include the following.

IGBT applications

See also: Insulated-gate bipolar transistor § Applications

The insulated-gate bipolar transistor (IGBT) is a power transistor with characteristics of both a MOSFET and bipolar junction transistor (BJT).949 IGBTs are widely used in the following transportation applications.950

Space industry

In the space industry, MOSFET devices were adopted by NASA for space research in 1964, for its Interplanetary Monitoring Platform (IMP) program967 and Explorers space exploration program.968 The use of MOSFETs was a major step forward in the electronics design of spacecraft and satellites.969 The IMP D (Explorer 33), launched in 1966, was the first spacecraft to use the MOSFET.970 Data gathered by IMP spacecraft and satellites were used to support the Apollo program, enabling the first crewed Moon landing with the Apollo 11 mission in 1969.971

The Cassini–Huygens to Saturn in 1997 had spacecraft power distribution accomplished 192 solid-state power switch (SSPS) devices, which also functioned as circuit breakers in the event of an overload condition. The switches were developed from a combination of two semiconductor devices with switching capabilities: the MOSFET and the ASIC (application-specific integrated circuit). This combination resulted in advanced power switches that had better performance characteristics than traditional mechanical switches.972

Other applications

MOSFETs are commonly used for a wide range of other applications, which include the following.

References

  1. "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019. https://www.computerhistory.org/atchm/who-invented-the-transistor/

  2. Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi:10.1149/2.F06131if. ISSN 1064-8208. https://www.electrochem.org/dl/interface/spr/spr13/spr13_p055_061.pdf

  3. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 120 & 321–323. ISBN 9783540342588. 9783540342588

  4. Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. p. 46. ISBN 9780801886393. 9780801886393

  5. Sah, Chih-Tang (October 1988). "Evolution of the MOS transistor-from conception to VLSI" (PDF). Proceedings of the IEEE. 76 (10): 1280–1326 (1290). Bibcode:1988IEEEP..76.1280S. doi:10.1109/5.16328. ISSN 0018-9219. Those of us active in silicon material and device research during 1956–1960 considered this successful effort by the Bell Labs group led by Atalla to stabilize the silicon surface the most important and significant technology advance, which blazed the trail that led to silicon integrated circuit technology developments in the second phase and volume production in the third phase. /wiki/Chih-Tang_Sah

  6. Frosch, C. J.; Derick, L (1957). "Surface Protection and Selective Masking during Diffusion in Silicon". Journal of the Electrochemical Society. 104 (9): 547. doi:10.1149/1.2428650. https://iopscience.iop.org/article/10.1149/1.2428650

  7. KAHNG, D. (1961). "Silicon-Silicon Dioxide Surface Device". Technical Memorandum of Bell Laboratories: 583–596. doi:10.1142/9789814503464_0076. ISBN 978-981-02-0209-5. 978-981-02-0209-5

  8. Lojek, Bo (2007). History of Semiconductor Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. ISBN 978-3-540-34258-8. 978-3-540-34258-8

  9. Ligenza, J.R.; Spitzer, W.G. (1960). "The mechanisms for silicon oxidation in steam and oxygen". Journal of Physics and Chemistry of Solids. 14: 131–136. Bibcode:1960JPCS...14..131L. doi:10.1016/0022-3697(60)90219-5. https://linkinghub.elsevier.com/retrieve/pii/0022369760902195

  10. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 120. ISBN 9783540342588. 9783540342588

  11. "Computer History Museum – The Silicon Engine | 1955 – Photolithography Techniques Are Used to Make Silicon Devices". Computerhistory.org. Retrieved 2 June 2012. http://www.computerhistory.org/semiconductor/timeline/1955-Photolithography.html

  12. Moskowitz, Sanford L. (2016). Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons. pp. 165–167. ISBN 9780470508923. 9780470508923

  13. Bassett, Ross Knox (2002). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 53–4. ISBN 978-0-8018-6809-2. 978-0-8018-6809-2

  14. Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. p. 22. ISBN 9780801886393. 9780801886393

  15. "Tortoise of Transistors Wins the Race – CHM Revolution". Computer History Museum. Retrieved 22 July 2019. https://www.computerhistory.org/revolution/digital-logic/12/279

  16. "1964 – First Commercial MOS IC Introduced". Computer History Museum. http://www.computerhistory.org/semiconductor/timeline/1964-Commecial.html

  17. "Tortoise of Transistors Wins the Race – CHM Revolution". Computer History Museum. Retrieved 22 July 2019. https://www.computerhistory.org/revolution/digital-logic/12/279

  18. Kilby, J. S. (2007). "Miniaturized electronic circuits [US Patent No. 3,138, 743]". IEEE Solid-State Circuits Society Newsletter. 12 (2): 44–54. doi:10.1109/N-SSC.2007.4785580. ISSN 1098-4232. https://www.researchgate.net/publication/245509003

  19. "1968: Silicon Gate Technology Developed for ICs". Computer History Museum. Retrieved 22 July 2019. https://www.computerhistory.org/siliconengine/silicon-gate-technology-developed-for-ics/

  20. Memories: A Personal History of Bell Telephone Laboratories (PDF). Institute of Electrical and Electronics Engineers. 2011. p. 59. ISBN 978-1463677978. 978-1463677978

  21. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very-large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. 9780471828679

  22. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  23. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  24. "1967: Application Specific Integrated Circuits employ Computer-Aided Design". The Silicon Engine. Computer History Museum. Retrieved 9 November 2019. https://www.computerhistory.org/siliconengine/application-specific-integrated-circuits-employ-computer-aided-design/

  25. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  26. Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. 53 (9). Institute of Electrical and Electronics Engineers: 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640. Retrieved 13 October 2019. https://spectrum.ieee.org/the-surprising-story-of-the-first-microprocessors

  27. Sze, Simon Min. "Metal–oxide–semiconductor field-effect transistors". Encyclopædia Britannica. Retrieved 21 July 2019. /wiki/Simon_Sze

  28. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very-large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. 9780471828679

  29. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  30. Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. 53 (9). Institute of Electrical and Electronics Engineers: 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640. Retrieved 13 October 2019. https://spectrum.ieee.org/the-surprising-story-of-the-first-microprocessors

  31. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  32. Waclawek, Jan (2006). Culver, John (ed.). "The Unofficial History of 8051". The CPU Shack Museum. Retrieved 15 November 2019. http://www.cpushack.com/Historyofthe8051.html

  33. Lin, Youn-Long Steve (2007). Essential Issues in SOC Design: Designing Complex Systems-on-Chip. Springer Science & Business Media. p. 176. ISBN 9781402053528. 9781402053528

  34. "MOSFET: Toward the Scaling Limit". Semiconductor Technology Online. Retrieved 29 July 2019. http://maltiel-consulting.com/Semiconductor_technology_transistor.html

  35. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 466. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  36. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  37. Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. 53 (9). Institute of Electrical and Electronics Engineers: 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640. Retrieved 13 October 2019. https://spectrum.ieee.org/the-surprising-story-of-the-first-microprocessors

  38. Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. 53 (9). Institute of Electrical and Electronics Engineers: 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640. Retrieved 13 October 2019. https://spectrum.ieee.org/the-surprising-story-of-the-first-microprocessors

  39. Iniewski, Krzysztof, ed. (2010). CMOS Processors and Memories. Springer Science & Business Media. p. 4. ISBN 9789048192168. 9789048192168

  40. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  41. Iniewski, Krzysztof (2010). CMOS Processors and Memories. Springer Science & Business Media. ISBN 9789048192168. 9789048192168

  42. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  43. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  44. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  45. Macchiolo, A.; Andricek, L.; Moser, H. G.; Nisius, R.; Richter, R. H.; Weigell, P. (1 January 2012). "SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades". Physics Procedia. 37: 1009–1015. arXiv:1202.6497. Bibcode:2012PhPro..37.1009M. doi:10.1016/j.phpro.2012.02.444. ISSN 1875-3892. S2CID 91179768. /wiki/ArXiv_(identifier)

  46. Motoyoshi, M. (2009). "Through-Silicon Via (TSV)" (PDF). Proceedings of the IEEE. 97 (1): 43–48. doi:10.1109/JPROC.2008.2007462. ISSN 0018-9219. S2CID 29105721. Archived from the original (PDF) on 19 July 2019. https://web.archive.org/web/20190719120523/https://pdfs.semanticscholar.org/8a44/93b535463daa7d7317b08d8900a33b8cbaf4.pdf

  47. "Transistors Keep Moore's Law Alive". EETimes. 12 December 2018. Retrieved 18 July 2019. https://www.eetimes.com/author.asp?section_id=36&doc_id=1334068

  48. "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019. https://www.computerhistory.org/atchm/who-invented-the-transistor/

  49. Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. 53 (9). Institute of Electrical and Electronics Engineers: 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640. Retrieved 13 October 2019. https://spectrum.ieee.org/the-surprising-story-of-the-first-microprocessors

  50. Hittinger, William C. (1973). "Metal–Oxide–Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. ISSN 0036-8733. JSTOR 24923169. /wiki/Bibcode_(identifier)

  51. Sze, Simon Min. "Metal–oxide–semiconductor field-effect transistors". Encyclopædia Britannica. Retrieved 21 July 2019. /wiki/Simon_Sze

  52. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very-large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. 9780471828679

  53. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  54. Schwarz, A. F. (2014). Handbook of VLSI Chip Design and Expert Systems. Academic Press. p. 16. ISBN 9781483258058. 9781483258058

  55. Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. 53 (9). Institute of Electrical and Electronics Engineers: 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640. Retrieved 13 October 2019. https://spectrum.ieee.org/the-surprising-story-of-the-first-microprocessors

  56. "1971: Microprocessor Integrates CPU Function onto a Single Chip". The Silicon Engine. Computer History Museum. Retrieved 22 July 2019. https://www.computerhistory.org/siliconengine/microprocessor-integrates-cpu-function-onto-a-single-chip/

  57. Cushman, Robert H. (20 September 1975). "2-1/2-generation μP's-$10 parts that perform like low-end mini's" (PDF). EDN. http://www.swtpc.com/mholley/Microprocessors/EDN_Sep_20_1975_6502.pdf

  58. "Computer History Museum – The Silicon Engine | 1963 – Complementary MOS Circuit Configuration is Invented". Computerhistory.org. Retrieved 2 June 2012. http://www.computerhistory.org/semiconductor/timeline/1963-CMOS.html

  59. "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum. Retrieved 6 July 2019. https://www.computerhistory.org/siliconengine/complementary-mos-circuit-configuration-is-invented/

  60. "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved 5 July 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi727E.pdf

  61. "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved 5 July 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi727E.pdf

  62. Higgins, Richard J. (1983). Electronics with digital and analog integrated circuits. Prentice-Hall. p. 101. ISBN 9780132507042. The dominant difference is power: CMOS gates can consume about 100,000 times less power than their TTL equivalents! 9780132507042

  63. "Computer History Museum – Exhibits – Microprocessors". Computerhistory.org. Retrieved 2 June 2012. http://www.computerhistory.org/microprocessors/

  64. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  65. Solid State Design – Vol. 6. Horizon House. 1965. https://books.google.com/books?id=kG4rAQAAIAAJ&q=John+Schmidt

  66. "DRAM". IBM100. IBM. 9 August 2017. Retrieved 20 September 2019. https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

  67. "DRAM". IBM100. IBM. 9 August 2017. Retrieved 20 September 2019. https://www.ibm.com/ibm/history/ibm100/us/en/icons/dram/

  68. "Robert Dennard". Encyclopædia Britannica. Retrieved 8 July 2019. https://www.britannica.com/biography/Robert-Dennard

  69. "1970: MOS Dynamic RAM Competes with Magnetic Core Memory on Price". Computer History Museum. Retrieved 29 July 2019. https://www.computerhistory.org/siliconengine/mos-dynamic-ram-competes-with-magnetic-core-memory-on-price/

  70. "People | the Silicon Engine | Computer History Museum". People. Computer History Museum. Retrieved 17 August 2019. https://www.computerhistory.org/siliconengine/people/

  71. "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved 19 June 2019. https://www.computerhistory.org/storageengine/reusable-semiconductor-rom-introduced/

  72. Bez, R.; Pirovano, A. (2019). Advances in Non-Volatile Memory and Storage Technology. Woodhead Publishing. ISBN 9780081025857. 9780081025857

  73. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. pp. 314–5. ISBN 9783319475974. 9783319475974

  74. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  75. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  76. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  77. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  78. "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved 19 June 2019. https://www.computerhistory.org/storageengine/reusable-semiconductor-rom-introduced/

  79. Bez, R.; Pirovano, A. (2019). Advances in Non-Volatile Memory and Storage Technology. Woodhead Publishing. ISBN 9780081025857. 9780081025857

  80. "1971: Reusable semiconductor ROM introduced". Computer History Museum. Retrieved 19 June 2019. https://www.computerhistory.org/storageengine/reusable-semiconductor-rom-introduced/

  81. Bez, R.; Pirovano, A. (2019). Advances in Non-Volatile Memory and Storage Technology. Woodhead Publishing. ISBN 9780081025857. 9780081025857

  82. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  83. Hutchinson, Lee (4 June 2012). "Solid-state revolution: in-depth on how SSDs really work". Ars Technica. Retrieved 27 September 2019. https://arstechnica.com/information-technology/2012/06/inside-the-ssd-revolution-how-solid-state-disks-really-work/2/

  84. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  85. Windbacher, Thomas (June 2010). "Flash Memory". TU Wien. Retrieved 20 December 2019. http://www.iue.tuwien.ac.at/phd/windbacher/node14.html

  86. Iniewski, Krzysztof (2010). CMOS Processors and Memories. Springer Science & Business Media. ISBN 9789048192168. 9789048192168

  87. Solid State Design – Vol. 6. Horizon House. 1965. https://books.google.com/books?id=kG4rAQAAIAAJ&q=John+Schmidt

  88. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  89. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 264. ISBN 9783319475974. 9783319475974

  90. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  91. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  92. "Tortoise of Transistors Wins the Race – CHM Revolution". Computer History Museum. Retrieved 22 July 2019. https://www.computerhistory.org/revolution/digital-logic/12/279

  93. Powers, E.; Zimmermann, M. (1968). TADIM—A Digital Implementation of a Multichannel Data Modem. International Conference on Communications. IEEE. p. 706. With the advent of digital microelectronic integrated circuits and MOS FET shift register memories the application of "wholesale" technology to the implementation of a digital multichannel modem became extremely attractive for providing the advantages of extremely small size, light weight, high reliability and low cost, in addition to the inherent stability and freedom from adjustment provided by digital circuitry. https://books.google.com/books?id=YtpFAQAAIAAJ

  94. Solid State Design – Vol. 6. Horizon House. 1965. https://books.google.com/books?id=kG4rAQAAIAAJ&q=John+Schmidt

  95. "Robert Dennard". Encyclopædia Britannica. Retrieved 8 July 2019. https://www.britannica.com/biography/Robert-Dennard

  96. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  97. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. pp. 305–6. ISBN 9783319475974. 9783319475974

  98. Iniewski, Krzysztof (2010). CMOS Processors and Memories. Springer Science & Business Media. ISBN 9789048192168. 9789048192168

  99. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. pp. 276–9. ISBN 9783319475974. 9783319475974

  100. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. pp. 276–9. ISBN 9783319475974. 9783319475974

  101. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  102. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  103. Chris Toumazou; Pantelis Georgiou (December 2011). "40 years of ISFET technology:From neuronal sensing to DNA sequencing". Electronics Letters. Retrieved 13 May 2016. https://www.researchgate.net/publication/260616066

  104. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  105. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  106. Schöning, Michael J.; Poghossian, Arshak (10 September 2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 1364-5528. PMID 12375833. http://juser.fz-juelich.de/record/16078/files/12968.pdf

  107. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  108. Schöning, Michael J.; Poghossian, Arshak (10 September 2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 1364-5528. PMID 12375833. http://juser.fz-juelich.de/record/16078/files/12968.pdf

  109. Williams, J. B. (2017). The Electronics Revolution: Inventing the Future. Springer. pp. 245, 249–50. ISBN 9783319490885. 9783319490885

  110. Williams, J. B. (2017). The Electronics Revolution: Inventing the Future. Springer. pp. 245, 249–50. ISBN 9783319490885. 9783319490885

  111. Williams, J. B. (2017). The Electronics Revolution: Inventing the Future. Springer. pp. 245, 249–50. ISBN 9783319490885. 9783319490885

  112. Boyle, William S; Smith, George E. (1970). "Charge Coupled Semiconductor Devices". Bell Syst. Tech. J. 49 (4): 587–593. Bibcode:1970BSTJ...49..587B. doi:10.1002/j.1538-7305.1970.tb01790.x. /wiki/Bibcode_(identifier)

  113. Matsumoto, Kazuya; et al. (1985). "A new MOS phototransistor operating in a non-destructive readout mode". Japanese Journal of Applied Physics. 24 (5A): L323. Bibcode:1985JaJAP..24L.323M. doi:10.1143/JJAP.24.L323. S2CID 108450116. /wiki/Bibcode_(identifier)

  114. Eric R. Fossum (1993), "Active Pixel Sensors: Are CCD's Dinosaurs?" Proc. SPIE Vol. 1900, p. 2–14, Charge-Coupled Devices and Solid State Optical Sensors III, Morley M. Blouke; Ed.

  115. Lyon, Richard F. (2014). "The Optical Mouse: Early Biomimetic Embedded Vision". Advances in Embedded Computer Vision. Springer. pp. 3–22 [3]. ISBN 9783319093871. 9783319093871

  116. Lyon, Richard F. (August 1981). "The Optical Mouse, and an Architectural Methodology for Smart Digital Sensors" (PDF). In H. T. Kung; Robert F. Sproull; Guy L. Steele (eds.). VLSI Systems and Computations. Computer Science Press. pp. 1–19. doi:10.1007/978-3-642-68402-9_1. ISBN 978-3-642-68404-3. S2CID 60722329. 978-3-642-68404-3

  117. Brain, Marshall; Carmack, Carmen (24 April 2000). "How Computer Mice Work". HowStuffWorks. Retrieved 9 October 2019. https://computer.howstuffworks.com/mouse4.htm

  118. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  119. Schöning, Michael J.; Poghossian, Arshak (10 September 2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 1364-5528. PMID 12375833. http://juser.fz-juelich.de/record/16078/files/12968.pdf

  120. Rai-Choudhury, P. (2000). MEMS and MOEMS Technology and Applications. SPIE Press. pp. ix, 3–4. ISBN 9780819437167. 9780819437167

  121. Nathanson HC, Wickstrom RA (1965). "A Resonant-Gate Silicon Surface Transistor with High-Q Band-Pass Properties". Appl. Phys. Lett. 7 (4): 84–86. Bibcode:1965ApPhL...7...84N. doi:10.1063/1.1754323. /wiki/Applied_Physics_Letters

  122. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  123. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  124. Schöning, Michael J.; Poghossian, Arshak (10 September 2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 1364-5528. PMID 12375833. http://juser.fz-juelich.de/record/16078/files/12968.pdf

  125. Schöning, Michael J.; Poghossian, Arshak (10 September 2002). "Recent advances in biologically sensitive field-effect transistors (BioFETs)" (PDF). Analyst. 127 (9): 1137–1151. Bibcode:2002Ana...127.1137S. doi:10.1039/B204444G. ISSN 1364-5528. PMID 12375833. http://juser.fz-juelich.de/record/16078/files/12968.pdf

  126. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  127. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  128. Sun, Jianhai; Geng, Zhaoxin; Xue, Ning; Liu, Chunxiu; Ma, Tianjun (17 August 2018). "A Mini-System Integrated with Metal–Oxide–Semiconductor Sensor and Micro-Packed Gas Chromatographic Column". Micromachines. 9 (8): 408. doi:10.3390/mi9080408. ISSN 2072-666X. PMC 6187308. PMID 30424341. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187308

  129. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  130. Rai-Choudhury, P. (2000). MEMS and MOEMS Technology and Applications. SPIE Press. pp. ix, 3–4. ISBN 9780819437167. 9780819437167

  131. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  132. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  133. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  134. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  135. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  136. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal mplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  137. Irwin, J. David (1997). The Industrial Electronics Handbook. CRC Press. p. 218. ISBN 9780849383434. 9780849383434

  138. "Power MOSFET Basics" (PDF). Alpha & Omega Semiconductor. Retrieved 29 July 2019. http://www.aosmd.com/res/application_notes/mosfets/Power_MOSFET_Basics.pdf

  139. "Power MOSFET Basics" (PDF). Alpha & Omega Semiconductor. Retrieved 29 July 2019. http://www.aosmd.com/res/application_notes/mosfets/Power_MOSFET_Basics.pdf

  140. "Power Supply Technology – Buck DC/DC Converters". Mouser Electronics. Retrieved 11 August 2019. https://www.mouser.co.uk/applications/power-supply-topology-buck/

  141. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 239. ISBN 9780471828679. 9780471828679

  142. "Applying MOSFETs to Today's Power-Switching Designs". Electronic Design. 23 May 2016. Retrieved 10 August 2019. https://www.electronicdesign.com/mosfets/applying-mosfets-today-s-power-switching-designs

  143. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  144. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  145. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  146. "A 600W broadband HF/6m amplifier using affordable LDMOS devices". 27 October 2019. https://qrpblog.com/2019/10/a-600w-broadband-hf-amplifier-using-affordable-ldmos-devices/

  147. Carbone, James (September–October 2018). "Buyers can expect 30-week lead times and higher tags to continue for MOSFETs" (PDF). Electronics Sourcing: 18–19. http://www.electronics-sourcing.com/wp-content/uploads/2018/08/ESE-SepOct18.pdf

  148. "Automotive Power MOSFETs" (PDF). Fuji Electric. Retrieved 10 August 2019. https://www.fujielectric.com/company/tech/pdf/r50-2/03.pdf

  149. Gosden, D.F. (March 1990). "Modern Electric Vehicle Technology using an AC Motor Drive". Journal of Electrical and Electronics Engineering. 10 (1). Institution of Engineers Australia: 21–7. ISSN 0725-2986. https://trid.trb.org/view/353176

  150. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  151. "Power MOSFET Basics: Understanding Gate Charge and Using It To Assess Switching Performance". element14. Archived from the original on 30 June 2014. Retrieved 27 November 2010. https://web.archive.org/web/20140630044120/http://www.element-14.com/community/docs/DOC-18275/l/power-mosfet-basics-understanding-gate-charge-and-using-it-to-assess-switching-performance

  152. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  153. "AN4016: Application note – 2 kW PPA for ISM applications" (PDF). ST Microelectronics. December 2011. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/technical/document/application_note/f6/26/89/67/7f/45/44/13/DM00042862.pdf/files/DM00042862.pdf/jcr:content/translations/en.DM00042862.pdf

  154. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Newnes. pp. 147–148. ISBN 9780750626293. 9780750626293

  155. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  156. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  157. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  158. Mysiński, W. (September 2017). "SiC mosfet transistors in power analog application". 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe). pp. P1 – P7. doi:10.23919/EPE17ECCEEurope.2017.8099305. ISBN 978-90-75815-27-6. S2CID 33650463. 978-90-75815-27-6

  159. "Applying MOSFETs to Today's Power-Switching Designs". Electronic Design. 23 May 2016. Retrieved 10 August 2019. https://www.electronicdesign.com/mosfets/applying-mosfets-today-s-power-switching-designs

  160. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  161. "Applying MOSFETs to Today's Power-Switching Designs". Electronic Design. 23 May 2016. Retrieved 10 August 2019. https://www.electronicdesign.com/mosfets/applying-mosfets-today-s-power-switching-designs

  162. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  163. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  164. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  165. Gosden, D.F. (March 1990). "Modern Electric Vehicle Technology using an AC Motor Drive". Journal of Electrical and Electronics Engineering. 10 (1). Institution of Engineers Australia: 21–7. ISSN 0725-2986. https://trid.trb.org/view/353176

  166. "MOSFET". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/product/power/mosfet/

  167. Patel, Mukund R. (2004). Spacecraft Power Systems. CRC Press. p. 97. ISBN 9781420038217. 9781420038217

  168. Kularatna, Nihal (2000). Modern Component Families and Circuit Block Design. Newnes. p. 33. ISBN 9780750699921. 9780750699921

  169. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  170. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  171. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  172. Ali Emadi (2009). Integrated power electronic converters and digital control. CRC Press. pp. 145–146. ISBN 978-1-4398-0069-0. 978-1-4398-0069-0

  173. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  174. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  175. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  176. Emadi, Ali (2017). Handbook of Automotive Power Electronics and Motor Drives. CRC Press. p. 117. ISBN 9781420028157. 9781420028157

  177. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very-large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. 9780471828679

  178. "Applying MOSFETs to Today's Power-Switching Designs". Electronic Design. 23 May 2016. Retrieved 10 August 2019. https://www.electronicdesign.com/mosfets/applying-mosfets-today-s-power-switching-designs

  179. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  180. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  181. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  182. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  183. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  184. "3D Printers". STMicroelectronics. Retrieved 19 December 2019. https://www.st.com/en/applications/industrial-power-and-tools/3d-printers.html

  185. "3D printers". Infineon Technologies. Retrieved 19 December 2019. https://www.infineon.com/cms/en/applications/consumer/home-entertainment/3d-printers

  186. Meltzer, Michael (2015). The Cassini-Huygens Visit to Saturn: An Historic Mission to the Ringed Planet. Springer. p. 70. ISBN 9783319076089. 9783319076089

  187. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  188. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  189. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  190. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  191. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. p. v. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  192. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  193. McGowan, Kevin (2012). Semiconductors: From Book to Breadboard. Cengage. p. 207. ISBN 9781111313876. 9781111313876

  194. "BCD (Bipolar-CMOS-DMOS) — Key Technology for Power ICs". STMicroelectronics. Archived from the original on 6 June 2016. Retrieved 27 November 2019. https://www.st.com/content/st_com/en/about/innovation---technology/BCD.html

  195. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  196. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  197. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  198. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  199. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  200. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  201. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. p. 5. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  202. Andrea, Davide (2010). Battery Management Systems for Large Lithium Ion Battery Packs. Artech House. p. 215. ISBN 978-1-60807-105-0. 978-1-60807-105-0

  203. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  204. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  205. "MOSFET". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/product/power/mosfet/

  206. "Applying MOSFETs to Today's Power-Switching Designs". Electronic Design. 23 May 2016. Retrieved 10 August 2019. https://www.electronicdesign.com/mosfets/applying-mosfets-today-s-power-switching-designs

  207. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  208. Heftman, Gene (1 October 2005). "PWM: From a Single Chip To a Giant Industry". Power Electronics. Retrieved 16 November 2019. https://www.powerelectronics.com/power-management/pwm-single-chip-giant-industry

  209. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  210. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  211. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  212. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  213. "BCD (Bipolar-CMOS-DMOS) — Key Technology for Power ICs". STMicroelectronics. Archived from the original on 6 June 2016. Retrieved 27 November 2019. https://www.st.com/content/st_com/en/about/innovation---technology/BCD.html

  214. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  215. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  216. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  217. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  218. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  219. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  220. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  221. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  222. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  223. "Power Supply Technology – Buck DC/DC Converters". Mouser Electronics. Retrieved 11 August 2019. https://www.mouser.co.uk/applications/power-supply-topology-buck/

  224. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  225. "Applying MOSFETs to Today's Power-Switching Designs". Electronic Design. 23 May 2016. Retrieved 10 August 2019. https://www.electronicdesign.com/mosfets/applying-mosfets-today-s-power-switching-designs

  226. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  227. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  228. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  229. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  230. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  231. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  232. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  233. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  234. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  235. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  236. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  237. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  238. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  239. "AN1256: Application note – High-power RF MOSFET targets VHF applications" (PDF). ST Microelectronics. July 2007. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/technical/document/application_note/07/e8/f6/20/61/db/43/d2/CD00004135.pdf/files/CD00004135.pdf/jcr:content/translations/en.CD00004135.pdf

  240. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  241. "AN1256: Application note – High-power RF MOSFET targets VHF applications" (PDF). ST Microelectronics. July 2007. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/technical/document/application_note/07/e8/f6/20/61/db/43/d2/CD00004135.pdf/files/CD00004135.pdf/jcr:content/translations/en.CD00004135.pdf

  242. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  243. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  244. "SD49xx: 50 V RF MOSFETs for ISM applications" (PDF). ST Microelectronics. August 2015. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/6b/1f/70/b9/73/9f/45/8c/flsd49xx.pdf/files/flsd49xx.pdf/jcr:content/translations/en.flsd49xx.pdf

  245. "AN1256: Application note – High-power RF MOSFET targets VHF applications" (PDF). ST Microelectronics. July 2007. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/technical/document/application_note/07/e8/f6/20/61/db/43/d2/CD00004135.pdf/files/CD00004135.pdf/jcr:content/translations/en.CD00004135.pdf

  246. "STAC2942B – RF power transistor: HF/VHF/UHF RF power N-channel MOSFETs" (PDF). ST Microelectronics. Retrieved 22 December 2019. https://www.st.com/resource/en/datasheet/stac2942b.pdf

  247. "SD49xx: 50 V RF MOSFETs for ISM applications" (PDF). ST Microelectronics. August 2015. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/6b/1f/70/b9/73/9f/45/8c/flsd49xx.pdf/files/flsd49xx.pdf/jcr:content/translations/en.flsd49xx.pdf

  248. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  249. "SD49xx: 50 V RF MOSFETs for ISM applications" (PDF). ST Microelectronics. August 2015. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/6b/1f/70/b9/73/9f/45/8c/flsd49xx.pdf/files/flsd49xx.pdf/jcr:content/translations/en.flsd49xx.pdf

  250. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  251. "STAC2942B – RF power transistor: HF/VHF/UHF RF power N-channel MOSFETs" (PDF). ST Microelectronics. Retrieved 22 December 2019. https://www.st.com/resource/en/datasheet/stac2942b.pdf

  252. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  253. "ISM & Broadcast". ST Microelectronics. Retrieved 3 December 2019. https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html

  254. "SD49xx: 50 V RF MOSFETs for ISM applications" (PDF). ST Microelectronics. August 2015. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/flyer/6b/1f/70/b9/73/9f/45/8c/flsd49xx.pdf/files/flsd49xx.pdf/jcr:content/translations/en.flsd49xx.pdf

  255. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  256. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  257. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  258. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  259. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  260. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  261. "STAC4932B: HF/VHF/UHF RF power N-channel MOSFET" (PDF). ST Microelectronics. January 2014. Retrieved 22 December 2019. https://www.st.com/resource/en/datasheet/stac4932b.pdf

  262. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  263. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  264. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  265. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  266. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  267. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  268. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  269. Hittinger, William C. (1973). "Metal–Oxide–Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. ISSN 0036-8733. JSTOR 24923169. /wiki/Bibcode_(identifier)

  270. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  271. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  272. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  273. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  274. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  275. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  276. "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved 5 July 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi727E.pdf

  277. Stephens, Carlene; Dennis, Maggie (2000). "Engineering Time: Inventing the Electronic Wristwatch" (PDF). The British Journal for the History of Science. 33 (4). Cambridge University Press: 477–497 (485). doi:10.1017/S0007087400004167. ISSN 0007-0874. Archived from the original (PDF) on 1 December 2017. Retrieved 29 December 2019. https://web.archive.org/web/20171201035923/http://ieee-uffc.org/wp-content/uploads/2016/11/step.pdf#page=11

  278. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  279. "Early 1970s: Evolution of CMOS LSI circuits for watches" (PDF). Semiconductor History Museum of Japan. Retrieved 6 July 2019. http://www.shmj.or.jp/english/pdf/ic/exhibi757E.pdf

  280. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  281. "Tortoise of Transistors Wins the Race – CHM Revolution". Computer History Museum. Retrieved 22 July 2019. https://www.computerhistory.org/revolution/digital-logic/12/279

  282. Valéry, Nicholas (30 October 1975). "Electronics in search of temps perdu". New Scientist. 68 (973): 284–5. https://books.google.com/books?id=w1bp8jnrbecC&pg=PA284

  283. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  284. Mishra, Vimal Kumar; Yadava, Narendra; Nigam, Kaushal (2018). "Analysis of RSNM and WSNM of 6T SRAM Cell Using Ultra Thin Body FD-SOI MOSFET". Advances in Signal Processing and Communication: Select Proceedings of ICSC 2018. Springer: 620. ISBN 978-981-13-2553-3. 978-981-13-2553-3

  285. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  286. Major, Liam (1 December 2018). "What is an Airsoft Mosfet? An Airsof Mosfet Introduction". Major Airsoft. Retrieved 11 November 2019. https://www.majorairsoft.co.uk/guides/what-is-an-airsoft-mosfet/

  287. "Amendment to Clarify Which Electronic Games Are Exempted From Commission Clarification". Federal Register. 47 (189). Office of the Federal Register, National Archives and Records Service, General Services Administration: 42, 748–50. 29 September 1982. https://books.google.com/books?id=miriD2Kog6gC&pg=PA42747

  288. Sridharan, K.; Pudi, Vikramkumar (2015). Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer. p. 1. ISBN 9783319166889. 9783319166889

  289. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  290. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  291. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  292. "1–600 MHz – Broadcast and ISM". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/1-600-mhz-broadcast-and-ism:RF-INDUST-1

  293. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  294. "ISM & Broadcast". ST Microelectronics. Retrieved 3 December 2019. https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html

  295. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  296. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  297. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  298. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  299. "RF Defrosting". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG

  300. "ISM & Broadcast". ST Microelectronics. Retrieved 3 December 2019. https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html

  301. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  302. "RF Defrosting". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG

  303. "RF Defrosting". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG

  304. Theeuwen, S. J. C. H.; Qureshi, J. H. (June 2012). "LDMOS Technology for RF Power Amplifiers" (PDF). IEEE Transactions on Microwave Theory and Techniques. 60 (6): 1755–1763. Bibcode:2012ITMTT..60.1755T. doi:10.1109/TMTT.2012.2193141. ISSN 1557-9670. S2CID 7695809. https://www.ampleon.com/documents/published-paper/AMP-PP-2017-0503.pdf

  305. Torres, Victor (21 June 2018). "Why LDMOS is the best technology for RF energy". Microwave Engineering Europe. Ampleon. Archived from the original on 10 December 2019. Retrieved 10 December 2019. https://web.archive.org/web/20191210005441/https://www.mwee.com/design-center/why-ldmos-best-technology-rf-energy

  306. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  307. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  308. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  309. Theeuwen, S. J. C. H.; Qureshi, J. H. (June 2012). "LDMOS Technology for RF Power Amplifiers" (PDF). IEEE Transactions on Microwave Theory and Techniques. 60 (6): 1755–1763. Bibcode:2012ITMTT..60.1755T. doi:10.1109/TMTT.2012.2193141. ISSN 1557-9670. S2CID 7695809. https://www.ampleon.com/documents/published-paper/AMP-PP-2017-0503.pdf

  310. Winder, Steve (2011). Power Supplies for LED Driving. Newnes. pp. 20–22, 39–41. ISBN 9780080558578. 9780080558578

  311. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  312. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  313. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  314. Business Automation. Hitchcock Publishing Company. 1972. p. 28. In addition, electro-optical technology and MOS/LSI electronics combine to provide a highly accurate embossed credit card reader which can be part of a POS terminal or standalone unit. It detects embossed numbers for direct checking with a central computer to verify a customer's credit and initiate the purchasing transaction. Also, the same electronics can be used to read data contained on magnetic tape and other types of credit card https://books.google.com/books?id=KPC7AAAAIAAJ

  315. Klinger, A.; Fu, K. S.; Kunii, T. L. (2014). Data Structures, Computer Graphics, Pattern Recognition. Academic Press. p. 331. ISBN 9781483267258. 9781483267258

  316. Business Automation. Hitchcock Publishing Company. 1972. p. 28. In addition, electro-optical technology and MOS/LSI electronics combine to provide a highly accurate embossed credit card reader which can be part of a POS terminal or standalone unit. It detects embossed numbers for direct checking with a central computer to verify a customer's credit and initiate the purchasing transaction. Also, the same electronics can be used to read data contained on magnetic tape and other types of credit card https://books.google.com/books?id=KPC7AAAAIAAJ

  317. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  318. "915 MHz RF Cooking". NXP Semiconductors. Retrieved 7 December 2019. https://www.nxp.com/products/rf/rf-power/rf-cooking/915-mhz-rf-cooking:RF-COOKING-1

  319. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  320. Torres, Victor (21 June 2018). "Why LDMOS is the best technology for RF energy". Microwave Engineering Europe. Ampleon. Archived from the original on 10 December 2019. Retrieved 10 December 2019. https://web.archive.org/web/20191210005441/https://www.mwee.com/design-center/why-ldmos-best-technology-rf-energy

  321. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  322. Sahay, Shubham; Kumar, Mamidala Jagadesh (2019). Junctionless Field-Effect Transistors: Design, Modeling, Simulation. John Wiley & Sons. ISBN 9781119523536. 9781119523536

  323. Sahay, Shubham; Kumar, Mamidala Jagadesh (2019). Junctionless Field-Effect Transistors: Design, Modeling, Simulation. John Wiley & Sons. ISBN 9781119523536. 9781119523536

  324. Hittinger, William C. (1973). "Metal–Oxide–Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. ISSN 0036-8733. JSTOR 24923169. /wiki/Bibcode_(identifier)

  325. Cherry, Robert William (June 1973). A calculator option for the Tektronix 4010 computer graphics terminal. Compilation of Abstracts of Dissertations, Theses and Research Papers Submitted by Candidates for Degrees (Thesis). Naval Postgraduate School. https://calhoun.nps.edu/handle/10945/16514

  326. Nigel Tout. "Sharp QT-8D "micro Compet"". Vintage Calculators Web Museum. Retrieved 29 September 2010. http://www.vintagecalculators.com/html/sharp_qt-8d.html

  327. "Hand-held Calculators". Vintage Calculators Web Museum. Retrieved 22 July 2019. http://www.vintagecalculators.com/html/hand-held_calculators.html

  328. Nigel Tout. "Sharp QT-8D "micro Compet"". Vintage Calculators Web Museum. Retrieved 29 September 2010. http://www.vintagecalculators.com/html/sharp_qt-8d.html

  329. "Hand-held Calculators". Vintage Calculators Web Museum. Retrieved 22 July 2019. http://www.vintagecalculators.com/html/hand-held_calculators.html

  330. "Hand-held Calculators". Vintage Calculators Web Museum. Retrieved 22 July 2019. http://www.vintagecalculators.com/html/hand-held_calculators.html

  331. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  332. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  333. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177–8, 406. ISBN 9780080508047. 9780080508047

  334. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177–8, 406. ISBN 9780080508047. 9780080508047

  335. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  336. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  337. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  338. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  339. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  340. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  341. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  342. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  343. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  344. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  345. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  346. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  347. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  348. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  349. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  350. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  351. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  352. Williams, J. B. (2017). The Electronics Revolution: Inventing the Future. Springer. pp. 245, 249–50. ISBN 9783319490885. 9783319490885

  353. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  354. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  355. Vernallis, Carol; Herzog, Amy; Richardson, John (2015). The Oxford Handbook of Sound and Image in Digital Media. Oxford University Press. p. 495. ISBN 978-0-19-025817-7. 978-0-19-025817-7

  356. Stump, David (2014). Digital Cinematography: Fundamentals, Tools, Techniques, Workflows. CRC Press. pp. 19–22. ISBN 978-1-136-04042-9. 978-1-136-04042-9

  357. Cressler, John D. (2017). "Let There Be Light: The Bright World of Photonics". Silicon Earth: Introduction to Microelectronics and Nanotechnology, Second Edition. CRC Press. p. 29. ISBN 978-1-351-83020-1. 978-1-351-83020-1

  358. Williams, J. B. (2017). The Electronics Revolution: Inventing the Future. Springer. pp. 245, 249–50. ISBN 9783319490885. 9783319490885

  359. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  360. Dhanani, Suhel; Parker, Michael (2012). Digital Video Processing for Engineers: A Foundation for Embedded Systems Design. Newnes. p. 11. ISBN 978-0-12-415761-3. 978-0-12-415761-3

  361. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  362. Kimizuka, Noboru; Yamazaki, Shunpei (2016). Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals. John Wiley & Sons. p. 217. ISBN 9781119247401. 9781119247401

  363. Zeidler, G.; Becker, D. (1974). "MOS LSI Custom Circuits Offer New Prospects for Communications Equipment Design". Electrical Communication. 49–50. Western Electric Company: 88–92. In many fields of communications equipment design, MOS LSI custom built circuits provide the only practical and economic solution. Important examples include the coin telephone NT 2000, the QUICKSTEP*push button set, a push button signal receiver. (...) A complete list of all applications is beyond the scope of this paper since new MOS developments are constantly being initiated in the various technical areas. Typical examples of completed and present MOS developments are:— crosspoints— multiplexers— modems— mobile radios— push button signal receivers— mail sorting machines— multimeters— telephone sets— coin telephones— teleprinters— screen displays— television receivers. https://books.google.com/books?id=TihQAAAAYAAJ

  364. Shanmugam, S. (2019). Nanotechnology. MJP Publisher. p. 83. https://books.google.com/books?id=cNWcDwAAQBAJ&pg=PA83

  365. Digital Principles & Applications. McGraw-Hill Education. 1975. p. 662. ISBN 978-0-07-014170-4. 978-0-07-014170-4

  366. "Companies" (PDF). Information Display. 3 (8). Society for Information Display: 41. September 1987. http://archive.informationdisplay.org/Portals/InformationDisplay/IssuePDF/V03N08-1987%20September.pdf

  367. Valéry, Nicholas (30 October 1975). "Electronics in search of temps perdu". New Scientist. 68 (973): 284–5. https://books.google.com/books?id=w1bp8jnrbecC&pg=PA284

  368. Kuo, Y. (2008). Thin Film Transistors 9 (TFT 9). The Electrochemical Society. p. 365. ISBN 9781566776554. 9781566776554

  369. Valéry, Nicholas (30 October 1975). "Electronics in search of temps perdu". New Scientist. 68 (973): 284–5. https://books.google.com/books?id=w1bp8jnrbecC&pg=PA284

  370. Kuo, Y. (2008). Thin Film Transistors 9 (TFT 9). The Electrochemical Society. p. 365. ISBN 9781566776554. 9781566776554

  371. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. ISBN 9783319000022. 9783319000022

  372. Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi:10.1149/2.F06131if. ISSN 1064-8208. https://www.electrochem.org/dl/interface/spr/spr13/spr13_p055_061.pdf

  373. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. ISBN 9783319000022. 9783319000022

  374. U.S. patent 5,598,285: K. Kondo, H. Terao, H. Abe, M. Ohta, K. Suzuki, T. Sasaki, G. Kawachi, J. Ohwada, Liquid crystal display device, filed 18 September 1992 and 20 January 1993. https://patents.google.com/patent/US5598285

  375. Peddie, Jon (2017). Augmented Reality: Where We Will All Live. Springer. p. 214. ISBN 978-3-319-54502-8. 978-3-319-54502-8

  376. Harrison, Linden T. (2005). Current Sources and Voltage References: A Design Reference for Electronics Engineers. Elsevier. p. 185. ISBN 978-0-08-045555-6. 978-0-08-045555-6

  377. Zeidler, G.; Becker, D. (1974). "MOS LSI Custom Circuits Offer New Prospects for Communications Equipment Design". Electrical Communication. 49–50. Western Electric Company: 88–92. In many fields of communications equipment design, MOS LSI custom built circuits provide the only practical and economic solution. Important examples include the coin telephone NT 2000, the QUICKSTEP*push button set, a push button signal receiver. (...) A complete list of all applications is beyond the scope of this paper since new MOS developments are constantly being initiated in the various technical areas. Typical examples of completed and present MOS developments are:— crosspoints— multiplexers— modems— mobile radios— push button signal receivers— mail sorting machines— multimeters— telephone sets— coin telephones— teleprinters— screen displays— television receivers. https://books.google.com/books?id=TihQAAAAYAAJ

  378. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  379. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. ISBN 9783319000022. 9783319000022

  380. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 243. ISBN 9783319475974. 9783319475974

  381. Electronic Components. U.S. Government Printing Office. 1974. p. 9. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA9

  382. Hamaoui, H.; Chesley, G.; Schlageter, J. (February 1972). "A low-cost color-TV sync generator on a single chip". 1972 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. 1972 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XV. pp. 124–125. doi:10.1109/ISSCC.1972.1155048. /wiki/Doi_(identifier)

  383. "Remote control for color tv goes the all-electronic route". Electronics. 43. McGraw-Hill Publishing Company: 102. April 1970. RCA's Wayne Evans, Carl Moeller and Edward Milbourn tell how digital signals and MOS FET memory modules are used to replace motor-driven tuning controls https://books.google.com/books?id=rFJJAQAAIAAJ

  384. Electronic Components. U.S. Government Printing Office. 1974. p. 9. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA9

  385. "Remote control for color tv goes the all-electronic route". Electronics. 43. McGraw-Hill Publishing Company: 102. April 1970. RCA's Wayne Evans, Carl Moeller and Edward Milbourn tell how digital signals and MOS FET memory modules are used to replace motor-driven tuning controls https://books.google.com/books?id=rFJJAQAAIAAJ

  386. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  387. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  388. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  389. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  390. Kent, Joel (May 2010). "Touchscreen technology basics & a new development". CMOS Emerging Technologies Conference. 6. CMOS Emerging Technologies Research: 1–13. ISBN 9781927500057. 9781927500057

  391. Kent, Joel (May 2010). "Touchscreen technology basics & a new development". CMOS Emerging Technologies Conference. 6. CMOS Emerging Technologies Research: 1–13. ISBN 9781927500057. 9781927500057

  392. "Semiconductor solutions for healthcare applications" (PDF). ST Microelectronics. 19 September 2019. Retrieved 22 December 2019. https://www.st.com/content/ccc/resource/sales_and_marketing/promotional_material/brochure/23/43/34/cb/b4/6c/4b/a6/brhealth.pdf/files/brhealth.pdf/jcr:content/translations/en.brhealth.pdf

  393. Kent, Joel (May 2010). "Touchscreen technology basics & a new development". CMOS Emerging Technologies Conference. 6. CMOS Emerging Technologies Research: 1–13. ISBN 9781927500057. 9781927500057

  394. "Carroll Releases ASIC-Based Touch System Controller". InfoWorld. 10 (12): 34. 21 March 1988. ISSN 0199-6649. https://books.google.com/books?id=9j4EAAAAMBAJ&pg=PA34

  395. "Amendment to Clarify Which Electronic Games Are Exempted From Commission Clarification". Federal Register. 47 (189). Office of the Federal Register, National Archives and Records Service, General Services Administration: 42, 748–50. 29 September 1982. https://books.google.com/books?id=miriD2Kog6gC&pg=PA42747

  396. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  397. Colinge, Jean-Pierre; Greer, Jim (2010). "Chapter 12: Transistor Structures for Nanoelectronics". Handbook of Nanophysics: Nanoelectronics and Nanophotonics. CRC Press. pp. 12–1. ISBN 9781420075519. 9781420075519

  398. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  399. Sridharan, K.; Pudi, Vikramkumar (2015). Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer. p. 1. ISBN 9783319166889. 9783319166889

  400. Waclawek, Jan (2006). Culver, John (ed.). "The Unofficial History of 8051". The CPU Shack Museum. Retrieved 15 November 2019. http://www.cpushack.com/Historyofthe8051.html

  401. Shaw, Dan (1 April 2020). "Hot chips: the uniquely digital story of video games". Happy Mag. Retrieved 1 April 2020. https://happymag.tv/hot-chips-the-uniquely-digital-story-of-video-games/

  402. LaMothe, André (2006). "Chapter 6: Game Controller Hardware" (PDF). Game Programming for the Propeller Powered HYDRA. Parallax, Inc. pp. 95–102. ISBN 1928982409. 1928982409

  403. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  404. Shaw, Dan (1 April 2020). "Hot chips: the uniquely digital story of video games". Happy Mag. Retrieved 1 April 2020. https://happymag.tv/hot-chips-the-uniquely-digital-story-of-video-games/

  405. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  406. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. ISBN 9781119107354. 9781119107354

  407. Shaw, Dan (1 April 2020). "Hot chips: the uniquely digital story of video games". Happy Mag. Retrieved 1 April 2020. https://happymag.tv/hot-chips-the-uniquely-digital-story-of-video-games/

  408. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  409. Shanmugam, S. (2019). Nanotechnology. MJP Publisher. p. 83. https://books.google.com/books?id=cNWcDwAAQBAJ&pg=PA83

  410. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. ISBN 9783319000022. 9783319000022

  411. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. ISBN 9783319000022. 9783319000022

  412. Shanmugam, S. (2019). Nanotechnology. MJP Publisher. p. 83. https://books.google.com/books?id=cNWcDwAAQBAJ&pg=PA83

  413. Shanmugam, S. (2019). Nanotechnology. MJP Publisher. p. 83. https://books.google.com/books?id=cNWcDwAAQBAJ&pg=PA83

  414. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. ISBN 9783319000022. 9783319000022

  415. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  416. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  417. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  418. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 215. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  419. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  420. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  421. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  422. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  423. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  424. Shaw, Dan (1 April 2020). "Hot chips: the uniquely digital story of video games". Happy Mag. Retrieved 1 April 2020. https://happymag.tv/hot-chips-the-uniquely-digital-story-of-video-games/

  425. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  426. "MOSFET". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/product/power/mosfet/

  427. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  428. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  429. Dixon-Warren, Sinjin (16 July 2019). "AC Adapters: GaN, SiC or Si?". EE Times. Retrieved 21 December 2019. https://www.eetimes.com/ac-adapters-gan-sic-or-si

  430. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  431. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  432. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177–8, 406. ISBN 9780080508047. 9780080508047

  433. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  434. Duncan, Ben (1996). High Performance Audio Power Amplifiers. Elsevier. pp. 177–8, 406. ISBN 9780080508047. 9780080508047

  435. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  436. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  437. Frank, Randy (1 November 2005). "Top 30 Power Milestones and Products". Power Electronics. Retrieved 16 November 2019. https://www.powerelectronics.com/content/top-30-power-milestones-and-products

  438. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  439. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  440. "RF DMOS Transistors". STMicroelectronics. Retrieved 22 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-dmos-transistors.html

  441. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 343. ISBN 978-3319089942. 978-3319089942

  442. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  443. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  444. "Radio Frequency Transistors". ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/en/radio-frequency-transistors.html

  445. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  446. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  447. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  448. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  449. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  450. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  451. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  452. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  453. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  454. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  455. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  456. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  457. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  458. Andrea, Davide (2010). Battery Management Systems for Large Lithium Ion Battery Packs. Artech House. pp. 131, 159, 204, 215, 218. ISBN 978-1-60807-105-0. 978-1-60807-105-0

  459. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  460. Andrea, Davide (2010). Battery Management Systems for Large Lithium Ion Battery Packs. Artech House. p. 218. ISBN 978-1-60807-105-0. 978-1-60807-105-0

  461. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  462. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  463. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  464. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  465. "ISM & Broadcast". ST Microelectronics. Retrieved 3 December 2019. https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html

  466. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  467. "1–600 MHz – Broadcast and ISM". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-ism-and-broadcast/1-600-mhz-broadcast-and-ism:RF-INDUST-1

  468. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  469. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  470. "RF Defrosting". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG

  471. "ISM & Broadcast". ST Microelectronics. Retrieved 3 December 2019. https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html

  472. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  473. "RF Defrosting". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG

  474. "RF Defrosting". NXP Semiconductors. Retrieved 12 December 2019. https://www.nxp.com/products/rf/rf-power/rf-defrosting:RF-DEFROSTING-HOME-PG

  475. Theeuwen, S. J. C. H.; Qureshi, J. H. (June 2012). "LDMOS Technology for RF Power Amplifiers" (PDF). IEEE Transactions on Microwave Theory and Techniques. 60 (6): 1755–1763. Bibcode:2012ITMTT..60.1755T. doi:10.1109/TMTT.2012.2193141. ISSN 1557-9670. S2CID 7695809. https://www.ampleon.com/documents/published-paper/AMP-PP-2017-0503.pdf

  476. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  477. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN 9781119107354. 9781119107354

  478. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  479. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  480. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  481. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  482. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  483. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  484. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 220. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  485. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  486. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  487. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  488. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  489. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  490. Theeuwen, S. J. C. H.; Qureshi, J. H. (June 2012). "LDMOS Technology for RF Power Amplifiers" (PDF). IEEE Transactions on Microwave Theory and Techniques. 60 (6): 1755–1763. Bibcode:2012ITMTT..60.1755T. doi:10.1109/TMTT.2012.2193141. ISSN 1557-9670. S2CID 7695809. https://www.ampleon.com/documents/published-paper/AMP-PP-2017-0503.pdf

  491. Winder, Steve (2011). Power Supplies for LED Driving. Newnes. pp. 20–22, 39–41. ISBN 9780080558578. 9780080558578

  492. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  493. Winder, Steve (2011). Power Supplies for LED Driving. Newnes. pp. 20–22, 39–41. ISBN 9780080558578. 9780080558578

  494. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  495. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  496. "Remarks by Director Iancu at the 2019 International Intellectual Property Conference". United States Patent and Trademark Office. 10 June 2019. Archived from the original on 17 December 2019. Retrieved 20 July 2019. https://web.archive.org/web/20191217200937/https://www.uspto.gov/about-us/news-updates/remarks-director-iancu-2019-international-intellectual-property-conference

  497. "Advanced information on the Nobel Prize in Physics 2000" (PDF). Nobel Prize. June 2018. Retrieved 17 August 2019. https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2000.pdf

  498. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN 9781119107354. 9781119107354

  499. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  500. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very-large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. 9780471828679

  501. Chen, Tom (1996). "Integrated Circuits". In Whitaker, Jerry C. (ed.). The Electronics Handbook. CRC Press. p. 644. ISBN 978-0-8493-8345-8. 978-0-8493-8345-8

  502. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN 9781119107354. 9781119107354

  503. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  504. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN 9781119107354. 9781119107354

  505. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  506. Green, M. M. (November 2010). "An overview on wireline communication systems for high-speed broadband communication". Proceedings of Papers 5th European Conference on Circuits and Systems for Communications (ECCSC'10): 1–8. https://ieeexplore.ieee.org/document/5733843

  507. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  508. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  509. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  510. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  511. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  512. Jindal, R. P. (2009). "From millibits to terabits per second and beyond - over 60 years of innovation". 2009 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6. doi:10.1109/EDST.2009.5166093. ISBN 978-1-4244-3831-0. S2CID 25112828. 978-1-4244-3831-0

  513. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  514. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  515. Colinge, Jean-Pierre; Greer, Jim (2010). "Chapter 12: Transistor Structures for Nanoelectronics". Handbook of Nanophysics: Nanoelectronics and Nanophotonics. CRC Press. pp. 12–1. ISBN 9781420075519. 9781420075519

  516. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  517. Parslow, R. (2013). Computer Graphics: Techniques and Applications. Springer Science & Business Media. p. 96. ISBN 9781475713206. 9781475713206

  518. Harding, Scharon (17 September 2019). "What Is a MOSFET? A Basic Definition". Tom's Hardware. Retrieved 7 November 2019. https://www.tomshardware.com/uk/reviews/mosfet-defintion-transistor-pc-motherboard-psu-explained,6343.html

  519. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 264. ISBN 9783319475974. 9783319475974

  520. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  521. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  522. Richard Shoup (2001). "SuperPaint: An Early Frame Buffer Graphics System" (PDF). Annals of the History of Computing. IEEE. Archived from the original (PDF) on 12 June 2004. https://web.archive.org/web/20040612215245/http://accad.osu.edu/~waynec/history/PDFs/Annals_final.pdf

  523. Goldwasser, S.M. (June 1983). Computer Architecture For Interactive Display Of Segmented Imagery. Computer Architectures for Spatially Distributed Data. Springer Science & Business Media. pp. 75–94 (81). ISBN 9783642821509. 9783642821509

  524. Peddie, Jon. "Famous Graphics Chips: TI TMS34010 and VRAM". IEEE Computer Society. Institute of Electrical and Electronics Engineers. Retrieved 1 November 2019. https://www.computer.org/publications/tech-news/chasing-pixels/Famous-Graphics-Chips-IBMs-professional-graphics-the-PGC-and-8514A/Famous-Graphics-Chips-TI-TMS34010-and-VRAM

  525. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. pp. 276–9. ISBN 9783319475974. 9783319475974

  526. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. pp. 276–9. ISBN 9783319475974. 9783319475974

  527. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  528. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  529. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  530. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  531. Harding, Scharon (17 September 2019). "What Is a MOSFET? A Basic Definition". Tom's Hardware. Retrieved 7 November 2019. https://www.tomshardware.com/uk/reviews/mosfet-defintion-transistor-pc-motherboard-psu-explained,6343.html

  532. O'Regan, Gerard (2016). Introduction to the History of Computing: A Computing History Primer. Springer. p. 132. ISBN 9783319331386. 9783319331386

  533. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  534. Waclawek, Jan (2006). Culver, John (ed.). "The Unofficial History of 8051". The CPU Shack Museum. Retrieved 15 November 2019. http://www.cpushack.com/Historyofthe8051.html

  535. O'Regan, Gerard (2016). Introduction to the History of Computing: A Computing History Primer. Springer. p. 132. ISBN 9783319331386. 9783319331386

  536. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  537. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  538. Cherry, Robert William (June 1973). A calculator option for the Tektronix 4010 computer graphics terminal. Compilation of Abstracts of Dissertations, Theses and Research Papers Submitted by Candidates for Degrees (Thesis). Naval Postgraduate School. https://calhoun.nps.edu/handle/10945/16514

  539. Waclawek, Jan (2006). Culver, John (ed.). "The Unofficial History of 8051". The CPU Shack Museum. Retrieved 15 November 2019. http://www.cpushack.com/Historyofthe8051.html

  540. O'Regan, Gerard (2016). Introduction to the History of Computing: A Computing History Primer. Springer. p. 132. ISBN 9783319331386. 9783319331386

  541. Lyon, Richard F. (2014). "The Optical Mouse: Early Biomimetic Embedded Vision". Advances in Embedded Computer Vision. Springer. pp. 3–22 [3]. ISBN 9783319093871. 9783319093871

  542. Lyon, Richard F. (August 1981). "The Optical Mouse, and an Architectural Methodology for Smart Digital Sensors" (PDF). In H. T. Kung; Robert F. Sproull; Guy L. Steele (eds.). VLSI Systems and Computations. Computer Science Press. pp. 1–19. doi:10.1007/978-3-642-68402-9_1. ISBN 978-3-642-68404-3. S2CID 60722329. 978-3-642-68404-3

  543. Brain, Marshall; Carmack, Carmen (24 April 2000). "How Computer Mice Work". HowStuffWorks. Retrieved 9 October 2019. https://computer.howstuffworks.com/mouse4.htm

  544. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  545. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  546. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  547. Cherry, Robert William (June 1973). A calculator option for the Tektronix 4010 computer graphics terminal. Compilation of Abstracts of Dissertations, Theses and Research Papers Submitted by Candidates for Degrees (Thesis). Naval Postgraduate School. https://calhoun.nps.edu/handle/10945/16514

  548. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  549. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  550. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  551. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  552. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  553. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  554. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  555. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  556. Shaw, Dan (1 April 2020). "Hot chips: the uniquely digital story of video games". Happy Mag. Retrieved 1 April 2020. https://happymag.tv/hot-chips-the-uniquely-digital-story-of-video-games/

  557. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  558. Sridharan, K.; Pudi, Vikramkumar (2015). Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer. p. 1. ISBN 9783319166889. 9783319166889

  559. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  560. Harding, Scharon (17 September 2019). "What Is a MOSFET? A Basic Definition". Tom's Hardware. Retrieved 7 November 2019. https://www.tomshardware.com/uk/reviews/mosfet-defintion-transistor-pc-motherboard-psu-explained,6343.html

  561. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  562. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  563. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  564. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  565. Holler, M.; Tam, S.; Castro, H.; Benson, R. (1989). "An electrically trainable artificial neural network (ETANN) with 10240 'floating gate' synapses". International Joint Conference on Neural Networks. Vol. 2. Washington, D.C. pp. 191–196. doi:10.1109/IJCNN.1989.118698. S2CID 17020463.{{cite book}}: CS1 maint: location missing publisher (link) /wiki/Doi_(identifier)

  566. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  567. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  568. Klinger, A.; Fu, K. S.; Kunii, T. L. (2014). Data Structures, Computer Graphics, Pattern Recognition. Academic Press. p. 331. ISBN 9781483267258. 9781483267258

  569. Schmalstieg, Dieter; Hollerer, Tobias (2016). Augmented Reality: Principles and Practice. Addison-Wesley Professional. pp. 209–10. ISBN 978-0-13-315320-0. 978-0-13-315320-0

  570. Westwood, James D. (2012). Medicine Meets Virtual Reality 19: NextMed. IOS Press. p. 93. ISBN 978-1-61499-021-5. 978-1-61499-021-5

  571. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  572. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  573. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  574. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  575. Proceedings of the Ninth International Symposium on Silicon-on-Insulator Technology and Devices. The Electrochemical Society. 1999. p. 305. ISBN 9781566772259. 9781566772259

  576. Proceedings of the Ninth International Symposium on Silicon-on-Insulator Technology and Devices. The Electrochemical Society. 1999. p. 305. ISBN 9781566772259. 9781566772259

  577. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  578. Sahay, Shubham; Kumar, Mamidala Jagadesh (2019). Junctionless Field-Effect Transistors: Design, Modeling, Simulation. John Wiley & Sons. ISBN 9781119523536. 9781119523536

  579. Jacob, J. (2001). Power Electronics: Principles and Applications. Cengage Learning. p. 280. ISBN 9780766823327. 9780766823327

  580. Forester, Tom (1987). High-tech Society: The Story of the Information Technology Revolution. MIT Press. p. 144. ISBN 978-0-262-56044-3. 978-0-262-56044-3

  581. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. ISBN 9781119107354. 9781119107354

  582. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  583. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  584. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  585. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  586. Voinigescu, Sorin (2013). High-Frequency Integrated Circuits. Cambridge University Press. ISBN 9780521873024. 9780521873024

  587. Hayward, G.; Gottlieb, A.; Jain, S.; Mahoney, D. (October 1987). "CMOS VLSI Applications in Broadband Circuit Switching". IEEE Journal on Selected Areas in Communications. 5 (8): 1231–1241. doi:10.1109/JSAC.1987.1146652. ISSN 1558-0008. /wiki/Doi_(identifier)

  588. Hui, J.; Arthurs, E. (October 1987). "A Broadband Packet Switch for Integrated Transport". IEEE Journal on Selected Areas in Communications. 5 (8): 1264–1273. doi:10.1109/JSAC.1987.1146650. ISSN 1558-0008. /wiki/Doi_(identifier)

  589. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  590. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  591. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  592. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  593. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  594. Voinigescu, Sorin (2013). High-Frequency Integrated Circuits. Cambridge University Press. ISBN 9780521873024. 9780521873024

  595. Gibson, Jerry D. (2018). The Communications Handbook. CRC Press. pp. 34–4. ISBN 9781420041163. 9781420041163

  596. Hayward, G.; Gottlieb, A.; Jain, S.; Mahoney, D. (October 1987). "CMOS VLSI Applications in Broadband Circuit Switching". IEEE Journal on Selected Areas in Communications. 5 (8): 1231–1241. doi:10.1109/JSAC.1987.1146652. ISSN 1558-0008. /wiki/Doi_(identifier)

  597. Hui, J.; Arthurs, E. (October 1987). "A Broadband Packet Switch for Integrated Transport". IEEE Journal on Selected Areas in Communications. 5 (8): 1264–1273. doi:10.1109/JSAC.1987.1146650. ISSN 1558-0008. /wiki/Doi_(identifier)

  598. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  599. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  600. "Infineon Hits Bulk-CMOS RF Switch Milestone". EE Times. 20 November 2018. Retrieved 26 October 2019. https://www.eetasia.com/news/article/18112004-infineon-hits-bulk-cmos-rf-switch-milestone

  601. Jacob, J. (2001). Power Electronics: Principles and Applications. Cengage Learning. p. 280. ISBN 9780766823327. 9780766823327

  602. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  603. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  604. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  605. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal mplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  606. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  607. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  608. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  609. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  610. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  611. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  612. "Remarks by Director Iancu at the 2019 International Intellectual Property Conference". United States Patent and Trademark Office. 10 June 2019. Archived from the original on 17 December 2019. Retrieved 20 July 2019. https://web.archive.org/web/20191217200937/https://www.uspto.gov/about-us/news-updates/remarks-director-iancu-2019-international-intellectual-property-conference

  613. Sridharan, K.; Pudi, Vikramkumar (2015). Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology. Springer. p. 1. ISBN 9783319166889. 9783319166889

  614. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  615. Kim, Woonyun (2015). "CMOS power amplifier design for cellular applications: an EDGE/GSM dual-mode quad-band PA in 0.18 μm CMOS". In Wang, Hua; Sengupta, Kaushik (eds.). RF and mm-Wave Power Generation in Silicon. Academic Press. pp. 89–90. ISBN 978-0-12-409522-9. 978-0-12-409522-9

  616. "First chip-to-chip quantum teleportation harnessing silicon photonic chip fabrication". University of Bristol. 23 December 2019. Retrieved 28 January 2020. https://www.bristol.ac.uk/news/2019/december/quantum-teleportation.html

  617. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  618. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  619. Zeidler, G.; Becker, D. (1974). "MOS LSI Custom Circuits Offer New Prospects for Communications Equipment Design". Electrical Communication. 49–50. Western Electric Company: 88–92. In many fields of communications equipment design, MOS LSI custom built circuits provide the only practical and economic solution. Important examples include the coin telephone NT 2000, the QUICKSTEP*push button set, a push button signal receiver. (...) A complete list of all applications is beyond the scope of this paper since new MOS developments are constantly being initiated in the various technical areas. Typical examples of completed and present MOS developments are:— crosspoints— multiplexers— modems— mobile radios— push button signal receivers— mail sorting machines— multimeters— telephone sets— coin telephones— teleprinters— screen displays— television receivers. https://books.google.com/books?id=TihQAAAAYAAJ

  620. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 215. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  621. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  622. Powers, E.; Zimmermann, M. (1968). TADIM—A Digital Implementation of a Multichannel Data Modem. International Conference on Communications. IEEE. p. 706. With the advent of digital microelectronic integrated circuits and MOS FET shift register memories the application of "wholesale" technology to the implementation of a digital multichannel modem became extremely attractive for providing the advantages of extremely small size, light weight, high reliability and low cost, in addition to the inherent stability and freedom from adjustment provided by digital circuitry. https://books.google.com/books?id=YtpFAQAAIAAJ

  623. "Milgo Modems Out". Computerworld. 6 (48). IDG Enterprise: 34. 29 November 1972. ISSN 0010-4841. https://books.google.com/books?id=XFwBCNwWK8MC&pg=PA34

  624. Zeidler, G.; Becker, D. (1974). "MOS LSI Custom Circuits Offer New Prospects for Communications Equipment Design". Electrical Communication. 49–50. Western Electric Company: 88–92. In many fields of communications equipment design, MOS LSI custom built circuits provide the only practical and economic solution. Important examples include the coin telephone NT 2000, the QUICKSTEP*push button set, a push button signal receiver. (...) A complete list of all applications is beyond the scope of this paper since new MOS developments are constantly being initiated in the various technical areas. Typical examples of completed and present MOS developments are:— crosspoints— multiplexers— modems— mobile radios— push button signal receivers— mail sorting machines— multimeters— telephone sets— coin telephones— teleprinters— screen displays— television receivers. https://books.google.com/books?id=TihQAAAAYAAJ

  625. Voinigescu, Sorin (2013). High-Frequency Integrated Circuits. Cambridge University Press. ISBN 9780521873024. 9780521873024

  626. Mishra, Vimal Kumar; Yadava, Narendra; Nigam, Kaushal (2018). "Analysis of RSNM and WSNM of 6T SRAM Cell Using Ultra Thin Body FD-SOI MOSFET". Advances in Signal Processing and Communication: Select Proceedings of ICSC 2018. Springer: 620. ISBN 978-981-13-2553-3. 978-981-13-2553-3

  627. Jindal, R. P. (2009). "From millibits to terabits per second and beyond - over 60 years of innovation". 2009 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6. doi:10.1109/EDST.2009.5166093. ISBN 978-1-4244-3831-0. S2CID 25112828. 978-1-4244-3831-0

  628. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN 9781119107354. 9781119107354

  629. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  630. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  631. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  632. Geerts, Yves; Steyaert, Michiel; Sansen, Willy (2013) [1st pub. 2004]. "Chapter 8: Single-Loop Multi-Bit Sigma-Delta Modulators". In Rodríguez-Vázquez, Angel; Medeiro, Fernando; Janssens, Edmond (eds.). CMOS Telecom Data Converters. Springer Science & Business Media. p. 277. ISBN 978-1-4757-3724-0. 978-1-4757-3724-0

  633. Green, M. M. (November 2010). "An overview on wireline communication systems for high-speed broadband communication". Proceedings of Papers 5th European Conference on Circuits and Systems for Communications (ECCSC'10): 1–8. https://ieeexplore.ieee.org/document/5733843

  634. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  635. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 264. ISBN 9783319475974. 9783319475974

  636. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  637. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. ISBN 9781119107354. 9781119107354

  638. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  639. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN 9781119107354. 9781119107354

  640. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  641. Debenham, M. J. (October 1974). "MOS in Telecommunications". Microelectronics Reliability. 13 (5): 417. Bibcode:1974MiRe...13..417D. doi:10.1016/0026-2714(74)90466-1. ISSN 0026-2714. https://books.google.com/books?id=s72-zb_GBd4C&pg=RA1-PA113

  642. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  643. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  644. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  645. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  646. Chapuis, Robert J.; Joel, Amos E. (2003). 100 Years of Telephone Switching. IOS Press. pp. 21, 135, 141–6, 214. ISBN 9781586033729. 9781586033729

  647. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  648. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  649. "Push-button telephone chips" (PDF). Wireless World: 383. August 1970. https://www.americanradiohistory.com/hd2/IDX-Site-Early-Radio/Archive-Wireless-World-IDX/70s/Wireless-World-1970-08-OCR-Page-0023.pdf

  650. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  651. "Push-button telephone chips" (PDF). Wireless World: 383. August 1970. https://www.americanradiohistory.com/hd2/IDX-Site-Early-Radio/Archive-Wireless-World-IDX/70s/Wireless-World-1970-08-OCR-Page-0023.pdf

  652. Valéry, Nicholas (11 April 1974). "Debut for the telephone on a chip". New Scientist. 62 (893): 65–7. ISSN 0262-4079. https://books.google.com/books?id=u0O-g0_fbrIC&pg=PA65

  653. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  654. Gust, Victor; Huizinga, Donald; Paas, Terrance (January 1976). "Call anywhere at the touch of a button" (PDF). Bell Laboratories Record. 54: 3–8.[permanent dead link‍] http://doc.telephonecollectors.info/dm/76Jan_BLR_P3_Touch_A_Matic.pdf#page=2

  655. Zeidler, G.; Becker, D. (1974). "MOS LSI Custom Circuits Offer New Prospects for Communications Equipment Design". Electrical Communication. 49–50. Western Electric Company: 88–92. In many fields of communications equipment design, MOS LSI custom built circuits provide the only practical and economic solution. Important examples include the coin telephone NT 2000, the QUICKSTEP*push button set, a push button signal receiver. (...) A complete list of all applications is beyond the scope of this paper since new MOS developments are constantly being initiated in the various technical areas. Typical examples of completed and present MOS developments are:— crosspoints— multiplexers— modems— mobile radios— push button signal receivers— mail sorting machines— multimeters— telephone sets— coin telephones— teleprinters— screen displays— television receivers. https://books.google.com/books?id=TihQAAAAYAAJ

  656. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  657. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  658. Floyd, Michael D.; Hillman, Garth D. (8 October 2018) [1st pub. 2000]. "Pulse-Code Modulation Codec-Filters". The Communications Handbook (2nd ed.). CRC Press. pp. 26–1, 26–2, 26–3. ISBN 9781420041163. 9781420041163

  659. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  660. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. p. 215. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  661. Zeidler, G.; Becker, D. (1974). "MOS LSI Custom Circuits Offer New Prospects for Communications Equipment Design". Electrical Communication. 49–50. Western Electric Company: 88–92. In many fields of communications equipment design, MOS LSI custom built circuits provide the only practical and economic solution. Important examples include the coin telephone NT 2000, the QUICKSTEP*push button set, a push button signal receiver. (...) A complete list of all applications is beyond the scope of this paper since new MOS developments are constantly being initiated in the various technical areas. Typical examples of completed and present MOS developments are:— crosspoints— multiplexers— modems— mobile radios— push button signal receivers— mail sorting machines— multimeters— telephone sets— coin telephones— teleprinters— screen displays— television receivers. https://books.google.com/books?id=TihQAAAAYAAJ

  662. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  663. Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653. 9783319011653

  664. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  665. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  666. Chen, Wai-Kai (2018). The VLSI Handbook. CRC Press. pp. 60–2. ISBN 9781420005967. 9781420005967

  667. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. p. 1. ISBN 9781461400370. 9781461400370

  668. Daneshrad, Babal; Eltawil, Ahmed M. (2002). "Integrated Circuit Technologies for Wireless Communications". Wireless Multimedia Network Technologies. The International Series in Engineering and Computer Science. Vol. 524. Springer US. pp. 227–244. doi:10.1007/0-306-47330-5_13. ISBN 0-7923-8633-7. 0-7923-8633-7

  669. Fralick, Stanley C.; Brandin, David H.; Kuo, Franklin F.; Harrison, Christopher (19–22 May 1975). "Digital Terminals For Packet Broadcasting" (PDF). Proceedings of the May 19-22, 1975, national computer conference and exposition on - AFIPS '75. AFIPS '75. American Federation of Information Processing Societies. p. 253. doi:10.1145/1499949.1499990. Archived (PDF) from the original on 16 November 2019. https://apps.dtic.mil/dtic/tr/fulltext/u2/a122774.pdf

  670. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 243. ISBN 9783319475974. 9783319475974

  671. Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Archived from the original (PDF) on 23 October 2016. Retrieved 22 October 2016. https://web.archive.org/web/20161023053607/http://www.ewh.ieee.org/r6/scv/ssc/May2008_WLAN.pdf

  672. Olstein, Katherine (Spring 2008). "Abidi Receives IEEE Pederson Award at ISSCC 2008" (PDF). SSCC: IEEE Solid-State Circuits Society News. 13 (2): 12. doi:10.1109/N-SSC.2008.4785734. S2CID 30558989. Archived from the original (PDF) on 7 November 2019. https://web.archive.org/web/20191107054057/https://pdfs.semanticscholar.org/5d0a/e04007ed1d4ee61af3494aa0126f0ae5dcaa.pdf

  673. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  674. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  675. Harrison, Linden T. (2005). Current Sources and Voltage References: A Design Reference for Electronics Engineers. Elsevier. p. 185. ISBN 978-0-08-045555-6. 978-0-08-045555-6

  676. Zeidler, G.; Becker, D. (1974). "MOS LSI Custom Circuits Offer New Prospects for Communications Equipment Design". Electrical Communication. 49–50. Western Electric Company: 88–92. In many fields of communications equipment design, MOS LSI custom built circuits provide the only practical and economic solution. Important examples include the coin telephone NT 2000, the QUICKSTEP*push button set, a push button signal receiver. (...) A complete list of all applications is beyond the scope of this paper since new MOS developments are constantly being initiated in the various technical areas. Typical examples of completed and present MOS developments are:— crosspoints— multiplexers— modems— mobile radios— push button signal receivers— mail sorting machines— multimeters— telephone sets— coin telephones— teleprinters— screen displays— television receivers. https://books.google.com/books?id=TihQAAAAYAAJ

  677. O'Neill, A. (2008). "Asad Abidi Recognized for Work in RF-CMOS". IEEE Solid-State Circuits Society Newsletter. 13 (1): 57–58. doi:10.1109/N-SSC.2008.4785694. ISSN 1098-4232. /wiki/Doi_(identifier)

  678. "Infineon Hits Bulk-CMOS RF Switch Milestone". EE Times. 20 November 2018. Retrieved 26 October 2019. https://www.eetasia.com/news/article/18112004-infineon-hits-bulk-cmos-rf-switch-milestone

  679. Voinigescu, Sorin (2013). High-Frequency Integrated Circuits. Cambridge University Press. ISBN 9780521873024. 9780521873024

  680. Fralick, Stanley C.; Brandin, David H.; Kuo, Franklin F.; Harrison, Christopher (19–22 May 1975). "Digital Terminals For Packet Broadcasting" (PDF). Proceedings of the May 19-22, 1975, national computer conference and exposition on - AFIPS '75. AFIPS '75. American Federation of Information Processing Societies. p. 253. doi:10.1145/1499949.1499990. Archived (PDF) from the original on 16 November 2019. https://apps.dtic.mil/dtic/tr/fulltext/u2/a122774.pdf

  681. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370

  682. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  683. Jacob, J. (2001). Power Electronics: Principles and Applications. Cengage Learning. p. 280. ISBN 9780766823327. 9780766823327

  684. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 243. ISBN 9783319475974. 9783319475974

  685. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  686. Harding, Scharon (17 September 2019). "What Is a MOSFET? A Basic Definition". Tom's Hardware. Retrieved 7 November 2019. https://www.tomshardware.com/uk/reviews/mosfet-defintion-transistor-pc-motherboard-psu-explained,6343.html

  687. Kularatna, Nihal (1998). Power Electronics Design Handbook: Low-Power Components and Applications. Elsevier. p. 4. ISBN 978-0-08-051423-9. 978-0-08-051423-9

  688. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  689. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  690. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  691. "MOSFET". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/product/power/mosfet/

  692. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  693. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  694. "MOSFET". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/product/power/mosfet/

  695. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  696. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  697. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  698. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  699. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  700. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  701. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  702. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  703. Alagi, Filippo (29 October 2014). "Compact Modelling of the Hot-Carrier Degradation of Integrated HV MOSFETs". In Grasser, Tibor (ed.). Hot Carrier Degradation in Semiconductor Devices. Springer. p. 341. ISBN 978-3319089942. 978-3319089942

  704. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  705. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  706. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. p. 53. ISBN 9781119107354. 9781119107354

  707. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  708. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  709. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  710. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  711. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  712. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  713. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  714. "Radio Frequency Transistors". ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/en/radio-frequency-transistors.html

  715. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  716. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  717. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  718. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  719. Oliveira, Joao; Goes, João (2012). Parametric Analog Signal mplification Applied to Nanoscale CMOS Technologies. Springer Science & Business Media. p. 7. ISBN 9781461416708. 9781461416708

  720. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  721. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  722. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  723. Whiteley, Carol; McLaughlin, John Robert (2002). Technology, Entrepreneurs, and Silicon Valley. Institute for the History of Technology. ISBN 9780964921719. These active electronic components, or power semiconductor products, from Siliconix are used to switch and convert power in a wide range of systems, from portable information appliances to the communications infrastructure that enables the Internet. The company's power MOSFETs – tiny solid-state switches, or metal oxide semiconductor field-effect transistors – and power integrated circuits are widely used in cell phones and notebook computers to manage battery power efficiently 9780964921719

  724. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  725. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  726. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  727. "RF LDMOS Transistors". ST Microelectronics. Retrieved 2 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-ldmos-transistors.html

  728. "UM0890: User manual – 2-stage RF power amplifier with LPF based on the PD85006L-E and STAP85050 RF power transistors" (PDF). ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/content/ccc/resource/technical/document/user_manual/74/4f/b1/0b/5a/8e/49/f5/CD00261794.pdf/files/CD00261794.pdf/jcr:content/translations/en.CD00261794.pdf

  729. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  730. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  731. "Radio Frequency Transistors". ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/en/radio-frequency-transistors.html

  732. "RF LDMOS Transistors". ST Microelectronics. Retrieved 2 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-ldmos-transistors.html

  733. "915 MHz RF Cooking". NXP Semiconductors. Retrieved 7 December 2019. https://www.nxp.com/products/rf/rf-power/rf-cooking/915-mhz-rf-cooking:RF-COOKING-1

  734. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  735. Torres, Victor (21 June 2018). "Why LDMOS is the best technology for RF energy". Microwave Engineering Europe. Ampleon. Archived from the original on 10 December 2019. Retrieved 10 December 2019. https://web.archive.org/web/20191210005441/https://www.mwee.com/design-center/why-ldmos-best-technology-rf-energy

  736. Jindal, R. P. (2009). "From millibits to terabits per second and beyond - over 60 years of innovation". 2009 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6. doi:10.1109/EDST.2009.5166093. ISBN 978-1-4244-3831-0. S2CID 25112828. 978-1-4244-3831-0

  737. "Radio Frequency Transistors". ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/en/radio-frequency-transistors.html

  738. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  739. Jindal, R. P. (2009). "From millibits to terabits per second and beyond - over 60 years of innovation". 2009 2nd International Workshop on Electron Devices and Semiconductor Technology. pp. 1–6. doi:10.1109/EDST.2009.5166093. ISBN 978-1-4244-3831-0. S2CID 25112828. 978-1-4244-3831-0

  740. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. 2 April 2018. Retrieved 28 July 2019. https://www.computerhistory.org/atchm/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history/

  741. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  742. "Mobile & Wideband Comms". ST Microelectronics. Retrieved 4 December 2019. https://www.st.com/en/radio-frequency-transistors/mobile-wideband-comms.html

  743. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  744. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  745. Grabinski, Wladyslaw; Gneiting, Thomas (2010). POWER/HVMOS Devices Compact Modeling. Springer Science & Business Media. pp. 33–4. ISBN 9789048130467. 9789048130467

  746. "LDMOS Products and Solutions". NXP Semiconductors. Retrieved 4 December 2019. https://www.nxp.com/products/rf/rf-power/ldmos-products-and-solutions:RF-LDMOS-Products-Sol

  747. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  748. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  749. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  750. Baliga, B. Jayant (2005). Silicon RF Power MOSFETS. World Scientific. ISBN 9789812561213. 9789812561213

  751. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  752. Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653. 9783319011653

  753. Asif, Saad (2018). 5G Mobile Communications: Concepts and Technologies. CRC Press. pp. 128–134. ISBN 9780429881343. 9780429881343

  754. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  755. "Radio Frequency Transistors". ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/en/radio-frequency-transistors.html

  756. "Radio Frequency Transistors". ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/en/radio-frequency-transistors.html

  757. "Mobile & Wideband Comms". ST Microelectronics. Retrieved 4 December 2019. https://www.st.com/en/radio-frequency-transistors/mobile-wideband-comms.html

  758. "IGBT Definition". PC Magazine. Retrieved 17 August 2019. https://www.pcmag.com/encyclopedia/term/59900/igbt

  759. "Power Transistor Market Will Cross $13.0 Billion in 2011". IC Insights. 21 June 2011. Retrieved 15 October 2019. http://www.icinsights.com/news/bulletins/Power-Transistor-Market-Will-Cross-130-Billion-In-2011/

  760. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  761. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  762. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  763. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  764. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  765. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  766. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  767. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  768. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  769. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  770. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  771. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  772. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  773. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  774. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  775. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  776. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  777. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  778. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  779. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  780. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  781. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  782. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  783. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  784. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  785. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  786. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  787. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  788. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  789. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  790. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  791. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  792. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  793. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  794. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  795. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  796. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  797. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  798. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  799. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  800. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  801. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  802. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  803. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  804. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  805. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  806. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  807. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  808. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  809. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  810. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  811. Lindley, David (15 May 2015). "Focus: Landmarks—Accidental Discovery Leads to Calibration Standard". Physics. 8: 46. doi:10.1103/Physics.8.46. /wiki/Physics_(magazine)

  812. Lindley, David (15 May 2015). "Focus: Landmarks—Accidental Discovery Leads to Calibration Standard". Physics. 8: 46. doi:10.1103/Physics.8.46. /wiki/Physics_(magazine)

  813. K. v. Klitzing; G. Dorda; M. Pepper (1980). "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance". Phys. Rev. Lett. 45 (6): 494–497. Bibcode:1980PhRvL..45..494K. doi:10.1103/PhysRevLett.45.494. https://doi.org/10.1103%2FPhysRevLett.45.494

  814. Lindley, David (15 May 2015). "Focus: Landmarks—Accidental Discovery Leads to Calibration Standard". Physics. 8: 46. doi:10.1103/Physics.8.46. /wiki/Physics_(magazine)

  815. Jun-ichi Wakabayashi; Shinji Kawaji (1978). "Hall effect in silicon MOS inversion layers under strong magnetic fields". J. Phys. Soc. Jpn. 44 (6): 1839. Bibcode:1978JPSJ...44.1839W. doi:10.1143/JPSJ.44.1839. /wiki/Bibcode_(identifier)

  816. Lindley, David (15 May 2015). "Focus: Landmarks—Accidental Discovery Leads to Calibration Standard". Physics. 8: 46. doi:10.1103/Physics.8.46. /wiki/Physics_(magazine)

  817. K. v. Klitzing; G. Dorda; M. Pepper (1980). "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance". Phys. Rev. Lett. 45 (6): 494–497. Bibcode:1980PhRvL..45..494K. doi:10.1103/PhysRevLett.45.494. https://doi.org/10.1103%2FPhysRevLett.45.494

  818. Gilder, George (1990). Microcosm: The Quantum Revolution In Economics And Technology. Simon and Schuster. pp. 86-9, 95, 145–8, 300. ISBN 9780671705923. 9780671705923

  819. Datta, Kanak; Khosru, Quazi D. M. (1 April 2016). "III–V tri-gate quantum well MOSFET: Quantum ballistic simulation study for 10nm technology and beyond". Solid-State Electronics. 118: 66–77. arXiv:1802.09136. Bibcode:2016SSEle.118...66D. doi:10.1016/j.sse.2015.11.034. ISSN 0038-1101. S2CID 101934219. /wiki/ArXiv_(identifier)

  820. Kulkarni, Jaydeep P.; Roy, Kaushik (2010). "Technology/Circuit Co-Design for III-V FETs". In Oktyabrsky, Serge; Ye, Peide (eds.). Fundamentals of III-V Semiconductor MOSFETs. Springer Science & Business Media. pp. 423–442. doi:10.1007/978-1-4419-1547-4_14. ISBN 978-1-4419-1547-4. 978-1-4419-1547-4

  821. Lin, Jianqiang (2015). InGaAs Quantum-Well MOSFETs for logic applications (Thesis). Massachusetts Institute of Technology. hdl:1721.1/99777. /wiki/Massachusetts_Institute_of_Technology

  822. "WHAT'S NEWS: A review of the latest happenings in electronics", Radio-Electronics, vol. 62, no. 5, Gernsback, May 1991 https://archive.org/stream/radio_electronics_1991-05/Radio_Electronics_May_1991_djvu.txt

  823. Emadi, Ali (2017). Handbook of Automotive Power Electronics and Motor Drives. CRC Press. p. 117. ISBN 9781420028157. 9781420028157

  824. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  825. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  826. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  827. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  828. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  829. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  830. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  831. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  832. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  833. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  834. Gosden, D.F. (March 1990). "Modern Electric Vehicle Technology using an AC Motor Drive". Journal of Electrical and Electronics Engineering. 10 (1). Institution of Engineers Australia: 21–7. ISSN 0725-2986. https://trid.trb.org/view/353176

  835. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  836. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  837. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  838. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  839. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  840. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  841. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  842. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  843. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  844. Butler, P. M. (29 August 1989). Interplanetary Monitoring Platform (PDF). NASA. pp. 1, 11, 134. Retrieved 12 August 2019. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800012928.pdf

  845. White, H. D.; Lokerson, D. C. (1971). "The Evolution of IMP Spacecraft Mosfet Data Systems". IEEE Transactions on Nuclear Science. 18 (1): 233–236. Bibcode:1971ITNS...18..233W. doi:10.1109/TNS.1971.4325871. ISSN 0018-9499. /wiki/IEEE_Nuclear_and_Plasma_Sciences_Society

  846. Butrica, Andrew J. (2015). "Chapter 3: NASA's Role in the Manufacture of Integrated Circuits" (PDF). In Dick, Steven J. (ed.). Historical Studies in the Societal Impact of Spaceflight. NASA. pp. 149-250 (239-42). ISBN 978-1-62683-027-1. 978-1-62683-027-1

  847. Butler, P. M. (29 August 1989). Interplanetary Monitoring Platform (PDF). NASA. pp. 1, 11, 134. Retrieved 12 August 2019. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800012928.pdf

  848. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  849. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  850. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  851. "Automotive Power MOSFETs" (PDF). Fuji Electric. Retrieved 10 August 2019. https://www.fujielectric.com/company/tech/pdf/r50-2/03.pdf

  852. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  853. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  854. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  855. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  856. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  857. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 243. ISBN 9783319475974. 9783319475974

  858. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  859. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  860. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  861. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  862. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  863. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  864. Avron, Alex (11 February 2019). "Is Tesla's production creating a SiC MOSFET shortage?". PntPower. Retrieved 21 December 2019. https://www.pntpower.com/is-teslas-production-creating-a-sic-mosfet-shortage/

  865. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  866. "Tesla claims its latest self-driving chip is 7 times more powerful than its rivals'". VentureBeat. 22 April 2019. Retrieved 21 December 2019. https://venturebeat.com/2019/04/22/tesla-claims-its-latest-self-driving-chip-is-six-times-more-powerful-than-its-rivals/

  867. Emadi, Ali (2017). Handbook of Automotive Power Electronics and Motor Drives. CRC Press. p. 117. ISBN 9781420028157. 9781420028157

  868. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  869. "Automotive Power MOSFETs" (PDF). Fuji Electric. Retrieved 10 August 2019. https://www.fujielectric.com/company/tech/pdf/r50-2/03.pdf

  870. Waclawek, Jan (2006). Culver, John (ed.). "The Unofficial History of 8051". The CPU Shack Museum. Retrieved 15 November 2019. http://www.cpushack.com/Historyofthe8051.html

  871. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  872. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  873. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  874. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  875. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  876. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  877. Emadi, Ali (2017). Handbook of Automotive Power Electronics and Motor Drives. CRC Press. p. 117. ISBN 9781420028157. 9781420028157

  878. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  879. "HITFETs: Smart, Protected MOSFETs" (PDF). Infineon. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-ApplicationNote_v12-AN-v01_00-EN.pdf?fileId=5546d4625b62cd8a015bc8c8e5ae31d1

  880. Gosden, D.F. (March 1990). "Modern Electric Vehicle Technology using an AC Motor Drive". Journal of Electrical and Electronics Engineering. 10 (1). Institution of Engineers Australia: 21–7. ISSN 0725-2986. https://trid.trb.org/view/353176

  881. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  882. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  883. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  884. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  885. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  886. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  887. "Light electric vehicles". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/applications/consumer/light-vehicles/light-electric-vehicles/

  888. "Light electric vehicles". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/applications/consumer/light-vehicles/light-electric-vehicles/

  889. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  890. "Light electric vehicles". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/applications/consumer/light-vehicles/light-electric-vehicles/

  891. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  892. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  893. White, H. D.; Lokerson, D. C. (1971). "The Evolution of IMP Spacecraft Mosfet Data Systems". IEEE Transactions on Nuclear Science. 18 (1): 233–236. Bibcode:1971ITNS...18..233W. doi:10.1109/TNS.1971.4325871. ISSN 0018-9499. /wiki/IEEE_Nuclear_and_Plasma_Sciences_Society

  894. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  895. Butler, P. M. (29 August 1989). Interplanetary Monitoring Platform (PDF). NASA. pp. 1, 11, 134. Retrieved 12 August 2019. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800012928.pdf

  896. Butrica, Andrew J. (2015). "Chapter 3: NASA's Role in the Manufacture of Integrated Circuits" (PDF). In Dick, Steven J. (ed.). Historical Studies in the Societal Impact of Spaceflight. NASA. pp. 149-250 (239-42). ISBN 978-1-62683-027-1. 978-1-62683-027-1

  897. "Radio Frequency Transistors". ST Microelectronics. Retrieved 23 December 2019. https://www.st.com/en/radio-frequency-transistors.html

  898. "RF LDMOS Transistors". ST Microelectronics. Retrieved 2 December 2019. https://www.st.com/en/radio-frequency-transistors/rf-ldmos-transistors.html

  899. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  900. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  901. Korec, Jacek (2011). Low Voltage Power MOSFETs: Design, Performance and Applications. Springer Science+Business Media. pp. 9–14. ISBN 978-1-4419-9320-5. 978-1-4419-9320-5

  902. "Automotive Power MOSFETs" (PDF). Fuji Electric. Retrieved 10 August 2019. https://www.fujielectric.com/company/tech/pdf/r50-2/03.pdf

  903. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  904. "MOSFET". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/product/power/mosfet/

  905. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  906. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  907. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  908. "BCD (Bipolar-CMOS-DMOS) — Key Technology for Power ICs". STMicroelectronics. Archived from the original on 6 June 2016. Retrieved 27 November 2019. https://www.st.com/content/st_com/en/about/innovation---technology/BCD.html

  909. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  910. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  911. Frank, Randy (1 November 2005). "Top 30 Power Milestones and Products". Power Electronics. Retrieved 16 November 2019. https://www.powerelectronics.com/content/top-30-power-milestones-and-products

  912. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  913. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  914. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  915. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  916. Frank, Randy (1 November 2005). "Top 30 Power Milestones and Products". Power Electronics. Retrieved 16 November 2019. https://www.powerelectronics.com/content/top-30-power-milestones-and-products

  917. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  918. Emadi, Ali (2017). Handbook of Automotive Power Electronics and Motor Drives. CRC Press. p. 117. ISBN 9781420028157. 9781420028157

  919. "Automotive Power MOSFETs" (PDF). Fuji Electric. Retrieved 10 August 2019. https://www.fujielectric.com/company/tech/pdf/r50-2/03.pdf

  920. Frank, Randy (1 November 2005). "Top 30 Power Milestones and Products". Power Electronics. Retrieved 16 November 2019. https://www.powerelectronics.com/content/top-30-power-milestones-and-products

  921. Waclawek, Jan (2006). Culver, John (ed.). "The Unofficial History of 8051". The CPU Shack Museum. Retrieved 15 November 2019. http://www.cpushack.com/Historyofthe8051.html

  922. Frank, Randy (1 November 2005). "Top 30 Power Milestones and Products". Power Electronics. Retrieved 16 November 2019. https://www.powerelectronics.com/content/top-30-power-milestones-and-products

  923. Frank, Randy (1 November 2005). "Top 30 Power Milestones and Products". Power Electronics. Retrieved 16 November 2019. https://www.powerelectronics.com/content/top-30-power-milestones-and-products

  924. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  925. "MOSFET". Infineon Technologies. Retrieved 24 December 2019. https://www.infineon.com/cms/en/product/power/mosfet/

  926. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs. Springer. p. 245. ISBN 9783319475974. 9783319475974

  927. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  928. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  929. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  930. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  931. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  932. Williams, R. K.; Darwish, M. N.; Blanchard, R. A.; Siemieniec, R.; Rutter, P.; Kawaguchi, Y. (2017). "The Trench Power MOSFET—Part II: Application Specific VDMOS, LDMOS, Packaging, Reliability". IEEE Transactions on Electron Devices. 64 (3): 692–712. Bibcode:2017ITED...64..692W. doi:10.1109/TED.2017.2655149. ISSN 0018-9383. S2CID 38550249. /wiki/Bibcode_(identifier)

  933. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  934. Wilson, Peter H. (May 2005). "Automotive MOSFETs in Linear Applications: Thermal Instability" (PDF). Infineon. Retrieved 24 December 2019. https://www.infineon.com/dgdl/AutomotiveMOSFETsinLinearApplication-ThermalInstability.pdf?fileId=db3a304412b407950112b4188af12622

  935. Wilson, Peter H. (May 2005). "Automotive MOSFETs in Linear Applications: Thermal Instability" (PDF). Infineon. Retrieved 24 December 2019. https://www.infineon.com/dgdl/AutomotiveMOSFETsinLinearApplication-ThermalInstability.pdf?fileId=db3a304412b407950112b4188af12622

  936. Emadi, Ali (2017). Handbook of Automotive Power Electronics and Motor Drives. CRC Press. p. 117. ISBN 9781420028157. 9781420028157

  937. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  938. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  939. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  940. "MDmesh: 20 Years of Superjunction STPOWER™ MOSFETs, A Story About Innovation". STMicroelectronics. 11 September 2019. Retrieved 2 November 2019. https://blog.st.com/mdmesh-anniversary/

  941. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  942. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  943. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  944. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  945. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  946. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  947. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  948. "Automotive application guide" (PDF). Infineon. November 2018. Retrieved 23 December 2019. https://www.infineon.com/dgdl/Infineon-Automotive-Application-Guide-2019-ABR-v01_00-EN.pdf?fileId=5546d462584d1d4a015891808e617573

  949. "IGBT Definition". PC Magazine. Retrieved 17 August 2019. https://www.pcmag.com/encyclopedia/term/59900/igbt

  950. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  951. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  952. Schweber, Bill (18 August 2015). "Linear Motor Aircraft Launch System Takes the Steam Out of Catapults". GlobalSpec. Institute of Electrical and Electronics Engineers. Retrieved 29 December 2019. https://insights.globalspec.com/article/1365/linear-motor-aircraft-launch-system-takes-the-steam-out-of-catapults

  953. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  954. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  955. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  956. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  957. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  958. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  959. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  960. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  961. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  962. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  963. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  964. "NIHF Inductee Bantval Jayant Baliga Invented IGBT Technology". National Inventors Hall of Fame. Retrieved 17 August 2019. https://www.invent.org/inductees/bantval-jayant-baliga

  965. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  966. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. pp. x–xiv. ISBN 9781455731534. 9781455731534

  967. White, H. D.; Lokerson, D. C. (1971). "The Evolution of IMP Spacecraft Mosfet Data Systems". IEEE Transactions on Nuclear Science. 18 (1): 233–236. Bibcode:1971ITNS...18..233W. doi:10.1109/TNS.1971.4325871. ISSN 0018-9499. /wiki/IEEE_Nuclear_and_Plasma_Sciences_Society

  968. Butrica, Andrew J. (2015). "Chapter 3: NASA's Role in the Manufacture of Integrated Circuits" (PDF). In Dick, Steven J. (ed.). Historical Studies in the Societal Impact of Spaceflight. NASA. pp. 149-250 (239-42). ISBN 978-1-62683-027-1. 978-1-62683-027-1

  969. Butler, P. M. (29 August 1989). Interplanetary Monitoring Platform (PDF). NASA. pp. 1, 11, 134. Retrieved 12 August 2019. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800012928.pdf

  970. Butrica, Andrew J. (2015). "Chapter 3: NASA's Role in the Manufacture of Integrated Circuits" (PDF). In Dick, Steven J. (ed.). Historical Studies in the Societal Impact of Spaceflight. NASA. pp. 149-250 (239-42). ISBN 978-1-62683-027-1. 978-1-62683-027-1

  971. Butler, P. M. (29 August 1989). Interplanetary Monitoring Platform (PDF). NASA. pp. 1, 11, 134. Retrieved 12 August 2019. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19800012928.pdf

  972. Meltzer, Michael (2015). The Cassini-Huygens Visit to Saturn: An Historic Mission to the Ringed Planet. Springer. p. 70. ISBN 9783319076089. 9783319076089

  973. Riethmuller, W.; Benecke, W.; Schnakenberg, U.; Wagner, B. (June 1991). "Development of commercial CMOS process-based technologies for the fabrication of smart accelerometers". TRANSDUCERS '91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers. pp. 416–419. doi:10.1109/SENSOR.1991.148900. ISBN 0-87942-585-7. S2CID 111284977. 0-87942-585-7

  974. Baliga, B. Jayant (2015). The IGBT Device: Physics, Design and Applications of the Insulated Gate Bipolar Transistor. William Andrew. ISBN 9781455731534. 9781455731534

  975. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  976. Shanmugam, S. (2019). Nanotechnology. MJP Publisher. p. 83. https://books.google.com/books?id=cNWcDwAAQBAJ&pg=PA83

  977. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  978. Harrison, Linden T. (2005). Current Sources and Voltage References: A Design Reference for Electronics Engineers. Elsevier. p. 185. ISBN 978-0-08-045555-6. 978-0-08-045555-6

  979. "MOSFET DIFFERENTIAL AMPLIFIER" (PDF). Boston University. Retrieved 10 August 2019. http://sites.bu.edu/engcourses/files/2016/08/mosfet-differential-amplifier.pdf

  980. "MOSFET DIFFERENTIAL AMPLIFIER" (PDF). Boston University. Retrieved 10 August 2019. http://sites.bu.edu/engcourses/files/2016/08/mosfet-differential-amplifier.pdf

  981. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  982. "MOSFET DIFFERENTIAL AMPLIFIER" (PDF). Boston University. Retrieved 10 August 2019. http://sites.bu.edu/engcourses/files/2016/08/mosfet-differential-amplifier.pdf

  983. "MOSFET DIFFERENTIAL AMPLIFIER" (PDF). Boston University. Retrieved 10 August 2019. http://sites.bu.edu/engcourses/files/2016/08/mosfet-differential-amplifier.pdf

  984. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  985. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  986. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  987. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  988. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  989. Paul, D. J. (2003). "Nanoelectronics". In Meyers, Robert Allen (ed.). Encyclopedia of Physical Science and Technology (3rd ed.). Academic Press. pp. 285–301 (285–6). doi:10.1016/B0-12-227410-5/00469-5. ISBN 978-0-12-227420-6. Many new technologies appeared during the 20th century. If one had to decide on which new technology had the largest impact on mankind, the microelectronics industry would certainly be one of the main contenders. Microelectronic components in the form of microprocessors and memory are used in computers, audiovisual components from hi-fis and videos to televisions, cars (the smallest Daimler-Benz car has over 60 microprocessors), communications systems including telephones and mobile phones, banking, credit cards, cookers, heating controllers, toasters, food processors – the list is almost endless. (...) The microelectronics industry has therefore become nanoelectronics named after the Greek for a dwarf "nanos." This article will review the silicon nanoelectronic field and discuss how far the silicon MOSFET can be scaled down. 978-0-12-227420-6

  990. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  991. Hu, Chenming (13 February 2009). "MOS Capacitor" (PDF). UC Berkeley. Retrieved 6 October 2019. /wiki/Chenming_Hu

  992. Sze, Simon Min; Lee, Ming-Kwei (May 2012). "MOS Capacitor and MOSFET". Semiconductor Devices: Physics and Technology. John Wiley & Sons. ISBN 9780470537947. Retrieved 6 October 2019. 9780470537947

  993. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  994. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  995. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  996. "Design News". Design News. 27 (1–8). Cahners Publishing Company: 275. 1972. Today, under contracts with some 20 major companies, we're working on nearly 30 product programs—applications of MOS/LSI technology for automobiles, trucks, appliances, business machines, musical instruments, computer peripherals, cash registers, calculators, data transmission and telecommunication equipment. https://books.google.com/books?id=s5w-AQAAIAAJ

  997. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, Simulation. John Wiley & Sons. ISBN 9781118038239. 9781118038239

  998. Baker, R. Jacob (2011). CMOS: Circuit Design, Layout, and Simulation. John Wiley & Sons. p. 7. ISBN 978-1118038239. 978-1118038239

  999. "The Foundation of Today's Digital World: The Triumph of the MOS Transistor". Computer History Museum. 13 July 2010. Retrieved 21 July 2019. https://www.youtube.com/watch?v=q6fBEjf9WPw

  1000. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  1001. "MOSFET DIFFERENTIAL AMPLIFIER" (PDF). Boston University. Retrieved 10 August 2019. http://sites.bu.edu/engcourses/files/2016/08/mosfet-differential-amplifier.pdf

  1002. Chan, Yi-Jen (1992). Studies of InAIAs/InGaAs and GaInP/GaAs heterostructure FET's for high speed applications. University of Michigan. p. 1. The Si MOSFET has revolutionized the electronics industry and as a result impacts our daily lives in almost every conceivable way. https://books.google.com/books?id=sV4eAQAAMAAJ

  1003. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  1004. Lécuyer, Christophe (2006). Making Silicon Valley: Innovation and the Growth of High Tech, 1930–1970. Chemical Heritage Foundation. pp. 253–6 & 273. ISBN 9780262122818. 9780262122818

  1005. "60s Trends in the Semiconductor Industry". Semiconductor History Museum of Japan. Retrieved 7 August 2019. http://www.shmj.or.jp/english/trends/trd60s.html

  1006. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very-large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. 9780471828679

  1007. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  1008. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  1009. "1979: Single Chip Digital Signal Processor Introduced". The Silicon Engine. Computer History Museum. Retrieved 13 May 2019. https://www.computerhistory.org/siliconengine/single-chip-digital-signal-processor-introduced/

  1010. "1979: Single Chip Digital Signal Processor Introduced". The Silicon Engine. Computer History Museum. Retrieved 13 May 2019. https://www.computerhistory.org/siliconengine/single-chip-digital-signal-processor-introduced/

  1011. Hays, Patrick (16 April 2004). "DSPs: Back to the Future". ACM Queue. 2 (1): 42–51. doi:10.1145/984458.984485. https://doi.org/10.1145%2F984458.984485

  1012. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  1013. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  1014. "Applying MOSFETs to Today's Power-Switching Designs". Electronic Design. 23 May 2016. Retrieved 10 August 2019. https://www.electronicdesign.com/mosfets/applying-mosfets-today-s-power-switching-designs

  1015. Colinge, Jean-Pierre; Colinge, C. A. (2005). Physics of Semiconductor Devices. Springer Science & Business Media. p. 165. ISBN 9780387285238. 9780387285238

  1016. Electronic Components. U.S. Government Printing Office. 1974. p. 46. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA46

  1017. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  1018. Morgado, Alonso; Río, Rocío del; Rosa, José M. de la (2011). Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio. Springer Science & Business Media. ISBN 9781461400370. 9781461400370

  1019. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  1020. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  1021. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  1022. Electronic Components. U.S. Government Printing Office. 1974. p. 46. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA46

  1023. Allstot, David J. (2016). "Switched Capacitor Filters" (PDF). In Maloberti, Franco; Davies, Anthony C. (eds.). A Short History of Circuits and Systems: From Green, Mobile, Pervasive Networking to Big Data Computing. IEEE Circuits and Systems Society. pp. 105–110. ISBN 9788793609860. Archived from the original (PDF) on 30 September 2021. Retrieved 29 December 2019. 9788793609860

  1024. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 273–82. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  1025. Bapat, Y. N. (1992). Electronic Circuits and Systems : Analog and Digital,1e. Tata McGraw-Hill Education. p. 119. ISBN 978-0-07-460040-5. 978-0-07-460040-5

  1026. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. ISBN 9781119107354. 9781119107354

  1027. Bergveld, Piet (October 1985). "The impact of MOSFET-based sensors" (PDF). Sensors and Actuators. 8 (2): 109–127. Bibcode:1985SeAc....8..109B. doi:10.1016/0250-6874(85)87009-8. ISSN 0250-6874. Archived from the original (PDF) on 26 April 2021. Retrieved 29 December 2019. /wiki/Piet_Bergveld

  1028. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  1029. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  1030. Lewallen, D. R. (1969). "Mos LSI computer aided design system". Proceedings of the 6th annual conference on Design Automation - DAC '69. DAC '69 Proceedings of the 6th annual Design Automation Conference. pp. 91–101. doi:10.1145/800260.809019. /wiki/Doi_(identifier)

  1031. Van Beek, H. W. (May 1972). "Computer-aided design of MOS/LSI circuits". Proceedings of the November 16-18, 1971, fall joint computer conference on - AFIPS '71 (Fall). AFIPS '72 (Spring) Proceedings of the 16–18 May 1972, spring joint computer conference. pp. 1059–1063. doi:10.1145/1478873.1479014. /wiki/Doi_(identifier)

  1032. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  1033. Amos, S. W.; James, Mike (2013). Principles of Transistor Circuits: Introduction to the Design of Amplifiers, Receivers and Digital Circuits. Elsevier. p. 332. ISBN 9781483293905. 9781483293905

  1034. Baliga, B. Jayant (2010). Advanced Power MOSFET Concepts. Springer Science & Business Media. p. 554. ISBN 9781441959171. 9781441959171

  1035. Business Automation. Hitchcock Publishing Company. 1972. p. 28. In addition, electro-optical technology and MOS/LSI electronics combine to provide a highly accurate embossed credit card reader which can be part of a POS terminal or standalone unit. It detects embossed numbers for direct checking with a central computer to verify a customer's credit and initiate the purchasing transaction. Also, the same electronics can be used to read data contained on magnetic tape and other types of credit card https://books.google.com/books?id=KPC7AAAAIAAJ

  1036. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  1037. Grant, Duncan Andrew; Gowar, John (1989). Power MOSFETS: theory and applications. Wiley. p. 1. ISBN 9780471828679. The metal–oxide–semiconductor field-effect transistor (MOSFET) is the most commonly used active device in the very-large-scale integration of digital integrated circuits (VLSI). During the 1970s these components revolutionized electronic signal processing, control systems and computers. 9780471828679

  1038. Electronic Components. U.S. Government Printing Office. 1974. p. 23. https://books.google.com/books?id=HikuAAAAMAAJ&pg=PA23

  1039. Benrey, Ronald M. (October 1971). "Microelectronics in the '70s". Popular Science. 199 (4). Bonnier Corporation: 83–5, 150–2. ISSN 0161-7370. https://books.google.com/books?id=XgEAAAAAMBAJ&pg=PA83

  1040. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  1041. Hsu, Charles Ching-Hsiang; Lin, Yuan-Tai; Yang, Evans Ching-Sung, eds. (2014). "Preface". Logic Non-volatile Memory: The NVM Solutions from EMemory. World Scientific. p. vii. ISBN 978-981-4460-91-0. 978-981-4460-91-0

  1042. "Infineon EiceDRIVER™ gate driver ICs" (PDF). Infineon. August 2019. Retrieved 26 December 2019. https://www.infineon.com/dgdl/Infineon-EiceDRIVER_Gate_Driver_ICs-ProductSelectionGuide-v01_01-EN.pdf?fileId=5546d46250cc1fdf015110069cb90f49

  1043. "ISM & Broadcast". ST Microelectronics. Retrieved 3 December 2019. https://www.st.com/en/radio-frequency-transistors/ism-broadcast.html

  1044. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  1045. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  1046. Veendrick, Harry (2000). Deep-Submicron CMOS ICs: From Basics to ASICs (PDF) (2nd ed.). Kluwer Academic Publishers. pp. 337–8. ISBN 9044001116. Archived from the original (PDF) on 6 December 2020. Retrieved 29 December 2019. 9044001116

  1047. Torres, Victor (21 June 2018). "Why LDMOS is the best technology for RF energy". Microwave Engineering Europe. Ampleon. Archived from the original on 10 December 2019. Retrieved 10 December 2019. https://web.archive.org/web/20191210005441/https://www.mwee.com/design-center/why-ldmos-best-technology-rf-energy

  1048. "Advanced information on the Nobel Prize in Physics 2000" (PDF). Nobel Prize. June 2018. Retrieved 17 August 2019. https://www.nobelprize.org/uploads/2018/06/advanced-physicsprize2000.pdf

  1049. Colinge, Jean-Pierre; Greer, James C. (2016). Nanowire Transistors: Physics of Devices and Materials in One Dimension. Cambridge University Press. p. 2. ISBN 9781107052406. 9781107052406

  1050. Rai-Choudhury, P. (2000). MEMS and MOEMS Technology and Applications. SPIE Press. pp. ix, 3–4. ISBN 9780819437167. 9780819437167

  1051. Veendrick, Harry J. M. (2017). Nanometer CMOS ICs: From Basics to ASICs (2nd ed.). Springer. p. 315. ISBN 9783319475974. 9783319475974

  1052. "Mobile & Wideband Comms". ST Microelectronics. Retrieved 4 December 2019. https://www.st.com/en/radio-frequency-transistors/mobile-wideband-comms.html

  1053. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  1054. Tsu-Jae King, Liu (11 June 2012). "FinFET: History, Fundamentals and Future". University of California, Berkeley. Symposium on VLSI Technology Short Course. Archived from the original on 28 May 2016. Retrieved 9 July 2019. /wiki/Tsu-Jae_King_Liu

  1055. Hisamoto, Digh; Hu, Chenming; Liu, Tsu-Jae King; Bokor, Jeffrey; Lee, Wen-Chin; Kedzierski, Jakub; Anderson, Erik; Takeuchi, Hideki; Asano, Kazuya (December 1998). "A folded-channel MOSFET for deep-sub-tenth micron era". International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217). pp. 1032–1034. doi:10.1109/IEDM.1998.746531. ISBN 0-7803-4774-9. S2CID 37774589. 0-7803-4774-9

  1056. "Infineon Solutions for Transportation" (PDF). Infineon. June 2013. Archived from the original (PDF) on 19 March 2022. Retrieved 23 December 2019. https://web.archive.org/web/20220319081717/https://www.infineon.com/dgdl/Infineon-Solutions_for_Transportation_24V-60V-ABR-v00_00-EN.pdf?fileId=5546d462602a9dc80160dfb145ba3f70

  1057. Jayant, Hemang Kumar; Arora, Manish (24–28 July 2019). "Induction Heating Based 3D Metal Printing of Eutectic Alloy Using Vibrating Nozzle". In Nicolantonio, Massimo Di; Rossi, Emilio; Alexander, Thomas (eds.). Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping: Proceedings of the AHFE 2019 International Conference on Additive Manufacturing, Modeling Systems and 3D Prototyping. Springer International Publishing. pp. 71–80. doi:10.1007/978-3-030-20216-3_7. ISBN 978-3-030-20216-3. S2CID 197613137. 978-3-030-20216-3

  1058. Evans, Brian (2012). Practical 3D Printers: The Science and Art of 3D Printing. Apress. p. 31. ISBN 978-1-4302-4393-9. 978-1-4302-4393-9

  1059. Omura, Yasuhisa; Mallik, Abhijit; Matsuo, Naoto (2017). MOS Devices for Low-Voltage and Low-Energy Applications. John Wiley & Sons. pp. 3–4. ISBN 9781119107354. 9781119107354

  1060. Lee, Thomas H. (2004). The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press. p. 121. ISBN 978-0-521-83539-8. 978-0-521-83539-8

  1061. Ballou, Glen (2013). Handbook for Sound Engineers. Taylor & Francis. ISBN 9781136122538. 9781136122538

  1062. Mead, Carver A.; Ismail, Mohammed, eds. (8 May 1989). Analog VLSI Implementation of Neural Systems (PDF). The Kluwer International Series in Engineering and Computer Science. Vol. 80. Norwell, MA: Kluwer Academic Publishers. doi:10.1007/978-1-4613-1639-8. ISBN 978-1-4613-1639-8. 978-1-4613-1639-8

  1063. Feldman, Leonard C. (2001). "Introduction". Fundamental Aspects of Silicon Oxidation. Springer Science & Business Media. pp. 1–11. ISBN 9783540416821. 9783540416821

  1064. Dabrowski, Jarek; Müssig, Hans-Joachim (2000). "1.2. The Silicon Age". Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World. World Scientific. pp. 3–13. ISBN 9789810232863. 9789810232863

  1065. Memories: A Personal History of Bell Telephone Laboratories (PDF). Institute of Electrical and Electronics Engineers. 2011. p. 59. ISBN 978-1463677978. 978-1463677978

  1066. "CMOS Sensors Enable Phone Cameras, HD Video". NASA Spinoff. NASA. Retrieved 6 November 2019. https://spinoff.nasa.gov/Spinoff2017/cg_1.html

  1067. Kuo, Y. (2008). Thin Film Transistors 9 (TFT 9). The Electrochemical Society. p. 365. ISBN 9781566776554. 9781566776554

  1068. Lança, Luís; Silva, Augusto (2013). "Digital Radiography Detectors: A Technical Overview". Digital Imaging Systems for Plain Radiography. New York: Springer. pp. 14–17. doi:10.1007/978-1-4614-5067-2_2. hdl:10400.21/1932. ISBN 978-1-4614-5066-5. 978-1-4614-5066-5

  1069. Kump, K; Grantors, P; Pla, F; Gobert, P (December 1998). "Digital X-ray detector technology". RBM-News. 20 (9): 221–226. doi:10.1016/S0222-0776(99)80006-6. /wiki/Doi_(identifier)

  1070. "CMOS Image Sensors Market 2020 to 2025 By Technology Growth and Demand: STMicroelectronics N.V, Sony Corporation, Samsung Electronics". MarketWatch. 9 March 2020. Retrieved 17 April 2020. https://www.marketwatch.com/press-release/cmos-image-sensors-market-2020-to-2025-by-technology-growth-and-demand-stmicroelectronics-nv-sony-corporation-samsung-electronics-2020-03-09