The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified in natural samples (tellurium-128, barium-130). There are 35 of these (see these nuclides), of which 25 have half-lives longer than 1013 years. For most of these 25, decay is difficult to observe, and for most purposes they can be regarded as effectively stable. Bismuth-209 is notable as it is the only naturally occurring isotope of an element which was long considered stable. A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235, have half-lives between 7.0×108 and 4.83×1011 years, which means they have undergone at least 0.5% depletion since the formation of the Solar System about 4.6×109 years ago, but still exist on Earth in significant quantities. They are the primary source of radiogenic heating and radioactive decay products. Together, there are a total of 286 primordial nuclides.
The list then covers the other radionuclides with half-lives longer than 1 hour, split into several tables in order of successively shorter lifetimes.
Over 60 nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include ~44 radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222. Others are the products of interactions with energetic cosmic-rays (e.g. cosmic ray spallation) (cosmogenic nuclides), such as carbon-14. This gives a total of about 350 naturally occurring nuclides. Other nuclides may be occasionally produced naturally by rare cosmogenic interactions or as a result of other natural nuclear reactions (nucleogenic nuclides), but are difficult to detect.
Each group of radionuclides, starting with the longest-lived primordial radionuclides, is sorted by decreasing half-life, but the tables are sortable by other columns.
No. (number) column
A running positive integer for reference. This number, i.e. position in this table, might be changed in the future, especially for nuclides with short half-lives.
nuclide column
Nuclide identifiers are given by their atomic mass number These are the theoretically stable nuclides, ordered by "energy".
Ordered by "energy".
Ordered by lower bound on half-life; in most cases this does not reflect the probable half-life but only our ability to measure it.
Ordered by half-life. Some of these are known to have been present in the early Solar System (marked "ESS", meaning the first few million years of the Solar System's history) from an excess of their decay products.
Ordered by half-life.
No decay has been observed, see element page. Not primordial so does not qualify as "observationally stable".
Ordered by half-life.
Ordered by half-life.
The following is incomplete and out of date, but is the only such list we have.
List was begun from reference and most more recent updats are reflected in reference. These sources do not indicate whether some heavy isotopes were produced and observed, or only predicted from estimated data. None of the latter should appear here.
Thoennessen, M. (2 April 2019). "Discovery of Nuclides Project". Retrieved 26 April 2019. https://people.nscl.msu.edu/~thoennes/isotopes/index.html
Two further nuclides, plutonium-244 and samarium-146, have half-lives just long enough (8.13×107 and 9.20×107 years[2]) that they could have survived from the formation of the Solar System and be present on Earth in trace quantities (having survived 56 and 50 half-lives). They might therefore be considered primordial, but fall short of the detection threshold in studies so far.[citation needed]
Merrill, Paul W. (September 1954). "17. Technetium in S-type stars". Transactions of the International Astronomical Union. 8: 832–833. https://www.cambridge.org/core/journals/transactions-of-the-international-astronomical-union/article/17-technetium-in-stype-stars/2BF75C2E03D323ED8A47150912DD595C
primarily sourced from https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx and https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-industry.aspx accessed 30 June 2016 https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx
Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s
/wiki/Gregorian_year
Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502): 152502. arXiv:2312.15632. Bibcode:2024PhRvL.132o2502Y. doi:10.1103/PhysRevLett.132.152502. PMID 38682998. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4): 50. arXiv:1212.2422. Bibcode:2013EPJA...49...50B. doi:10.1140/epja/i2013-13050-7. ISSN 1434-6001. /wiki/ArXiv_(identifier)
Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4): 50. arXiv:1212.2422. Bibcode:2013EPJA...49...50B. doi:10.1140/epja/i2013-13050-7. ISSN 1434-6001. /wiki/ArXiv_(identifier)
Akerib, D S; et al. (2020-10-01). "Search for two neutrino double electron capture of 124Xe and 126Xe in the full exposure of the LUX detector". Journal of Physics G: Nuclear and Particle Physics. 47 (10): 105105. arXiv:1912.02742. Bibcode:2020JPhG...47j5105A. doi:10.1088/1361-6471/ab9c2d. ISSN 0954-3899. /wiki/ArXiv_(identifier)
Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4): 50. arXiv:1212.2422. Bibcode:2013EPJA...49...50B. doi:10.1140/epja/i2013-13050-7. ISSN 1434-6001. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; d’Angelo, S.; Incicchitti, A.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Solopikhin, D. A.; Suhonen, J.; Tretyak, V. I. (2013-03-06). "Search for 2 β decays of 96 Ru and 104 Ru by ultralow-background HPGe γ spectrometry at LNGS: Final results". Physical Review C. 87 (3): 034607. arXiv:1302.7134. doi:10.1103/PhysRevC.87.034607. ISSN 0556-2813. /wiki/ArXiv_(identifier)
Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998-10-01). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. Bibcode:1998PhRvC..58.2566B. doi:10.1103/PhysRevC.58.2566. ISSN 0556-2813. /wiki/Bibcode_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4): 50. arXiv:1212.2422. Bibcode:2013EPJA...49...50B. doi:10.1140/epja/i2013-13050-7. ISSN 1434-6001. /wiki/ArXiv_(identifier)
Barabash, A. S.; Hubert, Ph.; Marquet, Ch.; Nachab, A.; Konovalov, S. I.; Perrot, F.; Piquemal, F.; Umatov, V. (2011-04-21). "Improved limits on β+ EC and ECEC processes in 112Sn". Physical Review C. 83 (4): 045503. doi:10.1103/PhysRevC.83.045503. ISSN 0556-2813. /wiki/Doi_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Danevich, F. A.; Hult, M.; Junghans, A.; Kasperovych, D. V.; Kropivyansky, B. N.; Lutter, G.; Marissens, G.; Polischuk, O. G.; Romaniuk, M. V.; Stroh, H.; Tessalina, S.; Tretyak, V. I.; Ware, B. (2022). "New limits on double-beta decay of 190Pt and 198Pt". The European Physical Journal C. 82 (1). arXiv:2201.06555. doi:10.1140/epjc/s10052-022-09989-1. ISSN 1434-6044. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Di Marco, A.; Incicchitti, A.; Kropivyansky, B. N.; Laubenstein, M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I. (2019). "First direct search for 2ϵ and ϵβ+ of 144Sm and 2β− decay of 154Sm". The European Physical Journal A. 55 (11). arXiv:1910.02262. doi:10.1140/epja/i2019-12911-3. ISSN 1434-6001. /wiki/ArXiv_(identifier)
Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2): 024605. arXiv:2009.01508. Bibcode:2020PhRvC.102b4605B. doi:10.1103/PhysRevC.102.024605. ISSN 2469-9985. /wiki/ArXiv_(identifier)
Belli, P; Bernabei, R; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Poda, D V; Tretyak, V I (2011-11-01). "Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators". Journal of Physics G: Nuclear and Particle Physics. 38 (11): 115107. arXiv:1110.3923. Bibcode:2011JPhG...38k5107B. doi:10.1088/0954-3899/38/11/115107. ISSN 0954-3899. /wiki/ArXiv_(identifier)
Lehnert, B; Wester, T; Degering, D; Sommer, D; Wagner, L; Zuber, K (2016-08-01). "Double electron capture searches in 74Se". Journal of Physics G: Nuclear and Particle Physics. 43 (8): 085201. arXiv:1605.05976. Bibcode:2016JPhG...43h5201L. doi:10.1088/0954-3899/43/8/085201. ISSN 0954-3899. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2): 024605. arXiv:2009.01508. Bibcode:2020PhRvC.102b4605B. doi:10.1103/PhysRevC.102.024605. ISSN 2469-9985. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv:2012.08339. Bibcode:2021NuPhA101222212B. doi:10.1016/j.nuclphysa.2021.122212. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv:2012.08339. Bibcode:2021NuPhA101222212B. doi:10.1016/j.nuclphysa.2021.122212. /wiki/ArXiv_(identifier)
Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv:2012.08339. Bibcode:2021NuPhA101222212B. doi:10.1016/j.nuclphysa.2021.122212. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv:2012.08339. Bibcode:2021NuPhA101222212B. doi:10.1016/j.nuclphysa.2021.122212. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kropivyansky, B.N.; Laubenstein, M.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Search for double beta decay of 136Ce and 138Ce with HPGe gamma detector". Nuclear Physics A. 930: 195–208. arXiv:1409.2734. Bibcode:2014NuPhA.930..195B. doi:10.1016/j.nuclphysa.2014.08.072. /wiki/ArXiv_(identifier)
Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15): 152501. arXiv:2306.01965. doi:10.1103/PhysRevLett.131.152501. PMID 37897780. /wiki/ArXiv_(identifier)
Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv:2012.08339. Bibcode:2021NuPhA101222212B. doi:10.1016/j.nuclphysa.2021.122212. /wiki/ArXiv_(identifier)
Belli, P.; Bernabei, R.; Dai, C.J.; Grianti, F.; He, H.L.; Ignesti, G.; Incicchitti, A.; Kuang, H.H.; Ma, J.M.; Montecchia, F.; Ponkratenko, O.A.; Prosperi, D.; Tretyak, V.I.; Zdesenko, Yu.G. (1999). "New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators". Nuclear Physics B. 563 (1–2): 97–106. Bibcode:1999NuPhB.563...97B. doi:10.1016/S0550-3213(99)00618-5. /wiki/Bibcode_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv:1103.5359. Bibcode:2011NuPhA.859..126B. doi:10.1016/j.nuclphysa.2011.04.003. /wiki/ArXiv_(identifier)
Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kropivyansky, B.N.; Laubenstein, M.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Search for double beta decay of 136Ce and 138Ce with HPGe gamma detector". Nuclear Physics A. 930: 195–208. arXiv:1409.2734. Bibcode:2014NuPhA.930..195B. doi:10.1016/j.nuclphysa.2014.08.072. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv:hep-ex/0211015. Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID 119523039. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv:1103.5359. Bibcode:2011NuPhA.859..126B. doi:10.1016/j.nuclphysa.2011.04.003. /wiki/ArXiv_(identifier)
Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv:1103.5359. Bibcode:2011NuPhA.859..126B. doi:10.1016/j.nuclphysa.2011.04.003. /wiki/ArXiv_(identifier)
Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2): 024605. arXiv:2009.01508. Bibcode:2020PhRvC.102b4605B. doi:10.1103/PhysRevC.102.024605. ISSN 2469-9985. /wiki/ArXiv_(identifier)
Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2): 024605. arXiv:2009.01508. Bibcode:2020PhRvC.102b4605B. doi:10.1103/PhysRevC.102.024605. ISSN 2469-9985. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv:1103.5359. Bibcode:2011NuPhA.859..126B. doi:10.1016/j.nuclphysa.2011.04.003. /wiki/ArXiv_(identifier)
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
https://www-nds.iaea.org/amdc/ame2020/NUBASE2020.pdf
Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s
/wiki/Gregorian_year
Münster, A.; Sivers, M. v.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kraus, H.; Lanfranchi, J. -C.; Laubenstein, M.; Loebell, J.; Ortigoza, Y.; Petricca, F.; Potzel, W.; Pröbst, F.; Puimedon, J.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Scholl, S.; Schönert, S.; Seidel, W.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A. (May 2014). "Radiopurity of CaWO4 crystals for direct dark matter search with CRESST and EURECA". Journal of Cosmology and Astroparticle Physics (5): 018. arXiv:1403.5114. Bibcode:2014JCAP...05..018M. doi:10.1088/1475-7516/2014/05/018. 018. /wiki/ArXiv_(identifier)
Also theoretically capable of β− decay
Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Nagorny, S.S.; Nahorna, V.V.; Nisi, S.; Wang, P. (January 2025). "A new measurement of 174Hf alpha decay". Nuclear Physics A. 1053: 122976. doi:10.1016/j.nuclphysa.2024.122976. /wiki/Doi_(identifier)
Theoretically capable of electron capture[25]
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s
/wiki/Gregorian_year
Chiera, Nadine M.; Sprung, Peter; Amelin, Yuri; Dressler, Rugard; Schumann, Dorothea; Talip, Zeynep (1 August 2024). "The 146Sm half-life re-measured: consolidating the chronometer for events in the early Solar System". Scientific Reports. 14 (1): 17436. doi:10.1038/s41598-024-64104-6. PMC 11294585. PMID 39090187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294585
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P. (2015). "Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis". Nature Communications. 6: 5956. arXiv:1509.08054. Bibcode:2015NatCo...6.5956W. doi:10.1038/ncomms6956. ISSN 2041-1723. PMC 4309418. PMID 25601158. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309418
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459. /wiki/Doi_(identifier)
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Cosmogenic Iron-60 In Iron Meteorites: Measurements By Low-Level Counting. https://www.lpi.usra.edu/meetings/metsoc2007/pdf/5281.pdf
Interstellar 60Fe detected on Earth - but where is the r-process nuclide 244Pu? https://www.hzdr.de/publications/Publ-25521
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC: 8988. Bibcode:2022NatSR..12.8988C. doi:10.1038/s41598-022-12684-6. ISSN 2045-2322. PMC 9148308. PMID 35643721. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148308
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. Bibcode:2022ARNPS..72..339D. doi:10.1146/annurev-nucl-010722-074615. https://doi.org/10.1146%2Fannurev-nucl-010722-074615
Clayton, Donald D.; Morgan, John A. (1977). "Muon production of 92,94Nb in the Earth's crust". Nature. 266 (5604): 712–713. doi:10.1038/266712a0. S2CID 4292459. /wiki/Doi_(identifier)
Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s
/wiki/Gregorian_year
Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the 93Mo half-life". Scientific Reports. 11 (1): 19788. Bibcode:2021NatSR..1119788K. doi:10.1038/s41598-021-99253-5. ISSN 2045-2322. PMC 8492754. PMID 34611245. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8492754
Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. Bibcode:2023AppRI.19410708C. doi:10.1016/j.apradiso.2023.110708. ISSN 0969-8043. PMID 36731388. https://doi.org/10.1016%2Fj.apradiso.2023.110708
Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s
/wiki/Gregorian_year
Note that NUBASE2020 uses the tropical year to convert between years and other units of time, not the Gregorian year. The relationship between years and other time units in NUBASE2020 is as follows: 1 y = 365.2422 d = 31 556 926 s
/wiki/Gregorian_year
Liang, C. F.; Paris, P.; Sheline, R. K. (2000-09-19). "α decay of 225Ra". Physical Review C. 62 (4). American Physical Society (APS): 047303. Bibcode:2000PhRvC..62d7303L. doi:10.1103/physrevc.62.047303. ISSN 0556-2813. /wiki/Bibcode_(identifier)
"SHE Factory first experiment – FLEROV LABORATORY of NUCLEAR REACTIONS". http://flerovlab.jinr.ru/she-factory-first-experiment/
"SHE Factory first experiment – FLEROV LABORATORY of NUCLEAR REACTIONS". http://flerovlab.jinr.ru/she-factory-first-experiment/
Jagdish K. Tuli, Nuclear Wallet Cards, 7th edition, April 2005, Brookhaven National Laboratory, US National Nuclear Data Center
Interactive chart of nuclides (Brookhaven National Laboratory) https://www.nndc.bnl.gov/nudat2/